1.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats
2.Clinical application of split liver transplantation: a single center report of 203 cases
Qing YANG ; Shuhong YI ; Binsheng FU ; Tong ZHANG ; Kaining ZENG ; Xiao FENG ; Jia YAO ; Hui TANG ; Hua LI ; Jian ZHANG ; Yingcai ZHANG ; Huimin YI ; Haijin LYU ; Jianrong LIU ; Gangjian LUO ; Mian GE ; Weifeng YAO ; Fangfei REN ; Jinfeng ZHUO ; Hui LUO ; Liping ZHU ; Jie REN ; Yan LYU ; Kexin WANG ; Wei LIU ; Guihua CHEN ; Yang YANG
Chinese Journal of Surgery 2024;62(4):324-330
Objective:To investigate the safety and therapeutic effect of split liver transplantation (SLT) in clinical application.Methods:This is a retrospective case-series study. The clinical data of 203 consecutive SLT, 79 living donor liver transplantation (LDLT) and 1 298 whole liver transplantation (WLT) performed at the Third Affiliated Hospital of Sun Yat-sen University from July 2014 to July 2023 were retrospectively analyzed. Two hundred and three SLT liver grafts were obtained from 109 donors. One hundred and twenty-seven grafts were generated by in vitro splitting and 76 grafts were generated by in vivo splitting. There were 90 adult recipients and 113 pediatric recipients. According to time, SLT patients were divided into two groups: the early SLT group (40 cases, from July 2014 to December 2017) and the mature SLT technology group (163 cases, from January 2018 to July 2023). The survival of each group was analyzed and the main factors affecting the survival rate of SLT were analyzed. The Kaplan-Meier method and Log-rank test were used for survival analysis.Results:The cumulative survival rates at 1-, 3-, and 5-year were 74.58%, 71.47%, and 71.47% in the early SLT group, and 88.03%, 87.23%, and 87.23% in the mature SLT group, respectively. Survival rates in the mature SLT group were significantly higher than those in the early SLT group ( χ2=5.560, P=0.018). The cumulative survival rates at 1-, 3- and 5-year were 93.41%, 93.41%, 89.95% in the LDLT group and 87.38%, 81.98%, 77.04% in the WLT group, respectively. There was no significant difference among the mature SLT group, the LDLT group and the WLT group ( χ2=4.016, P=0.134). Abdominal hemorrhage, infection, primary liver graft nonfunction,and portal vein thrombosis were the main causes of early postoperative death. Conclusion:SLT can achieve results comparable to those of WLT and LDLT in mature technology liver transplant centers, but it needs to go through a certain time learning curve.
3.Time-Dependent Sequential Changes of IL-10 and TGF-β1 in Mice with Deep Vein Thrombosis
Juan-Juan WU ; Jun-Jie HUANG ; Yu ZHANG ; Jia-Ying ZHUO ; Gang CHEN ; Shu-Han YANG ; Yun-Qi ZHAO ; Yan-Yan FAN
Journal of Forensic Medicine 2024;40(2):179-185
Objective To detect the expression changes of interleukin-10(IL-10)and transforming growth factor-β1(TGF-β1)during the development of deep vein thrombosis in mice,and to explore the application value of them in thrombus age estimation.Methods The mice in the experimental group were subjected to ligation of inferior vena cava.The mice were sacrificed by excessive anesthesia at 1 d,3 d,5 d,7 d,10 d,14 d and 21 d after ligation,respectively.The inferior vena cava segment with thrombosis was extracted below the ligation point.The mice in the control group were not ligated,and the inferior vena cava segment at the same position as the experimental group was extracted.The ex-pression changes of IL-10 and TGF-β1 were detected by immunohistochemistry(IHC),Western blot-ting and real-time qPCR.Results IHC results revealed that IL-10 was mainly expressed in monocytes in thrombosis and TGF-β1 was mainly expressed in monocytes and fibroblast-like cells in thrombosis.Western blotting and real-time qPCR showed that the relative expression levels of IL-10 and TGF-β1 in each experimental group were higher than those in the control group.The mRNA and protein levels of IL-10 reached the peak at 7 d and 10 d after ligation,respectively.The mRNA expression level at 7 d after ligation was 4.72±0.15 times that of the control group,and the protein expression level at 10 d after ligation was 7.15±0.28 times that of the control group.The mRNA and protein levels of TGF-β1 reached the peak at 10 d and 14 d after ligation,respectively.The mRNA expression level at 10 d after ligation was 2.58±0.14 times that of the control group,and the protein expression level at 14 d after ligation was 4.34±0.19 times that of the control group.Conclusion The expressions of IL-10 and TGF-β1 during the evolution of deep vein thrombosis present time-dependent sequential changes,and the expression levels of IL-10 and TGF-β1 can provide a reference basis for thrombus age estimation.
4.Clinical application of split liver transplantation: a single center report of 203 cases
Qing YANG ; Shuhong YI ; Binsheng FU ; Tong ZHANG ; Kaining ZENG ; Xiao FENG ; Jia YAO ; Hui TANG ; Hua LI ; Jian ZHANG ; Yingcai ZHANG ; Huimin YI ; Haijin LYU ; Jianrong LIU ; Gangjian LUO ; Mian GE ; Weifeng YAO ; Fangfei REN ; Jinfeng ZHUO ; Hui LUO ; Liping ZHU ; Jie REN ; Yan LYU ; Kexin WANG ; Wei LIU ; Guihua CHEN ; Yang YANG
Chinese Journal of Surgery 2024;62(4):324-330
Objective:To investigate the safety and therapeutic effect of split liver transplantation (SLT) in clinical application.Methods:This is a retrospective case-series study. The clinical data of 203 consecutive SLT, 79 living donor liver transplantation (LDLT) and 1 298 whole liver transplantation (WLT) performed at the Third Affiliated Hospital of Sun Yat-sen University from July 2014 to July 2023 were retrospectively analyzed. Two hundred and three SLT liver grafts were obtained from 109 donors. One hundred and twenty-seven grafts were generated by in vitro splitting and 76 grafts were generated by in vivo splitting. There were 90 adult recipients and 113 pediatric recipients. According to time, SLT patients were divided into two groups: the early SLT group (40 cases, from July 2014 to December 2017) and the mature SLT technology group (163 cases, from January 2018 to July 2023). The survival of each group was analyzed and the main factors affecting the survival rate of SLT were analyzed. The Kaplan-Meier method and Log-rank test were used for survival analysis.Results:The cumulative survival rates at 1-, 3-, and 5-year were 74.58%, 71.47%, and 71.47% in the early SLT group, and 88.03%, 87.23%, and 87.23% in the mature SLT group, respectively. Survival rates in the mature SLT group were significantly higher than those in the early SLT group ( χ2=5.560, P=0.018). The cumulative survival rates at 1-, 3- and 5-year were 93.41%, 93.41%, 89.95% in the LDLT group and 87.38%, 81.98%, 77.04% in the WLT group, respectively. There was no significant difference among the mature SLT group, the LDLT group and the WLT group ( χ2=4.016, P=0.134). Abdominal hemorrhage, infection, primary liver graft nonfunction,and portal vein thrombosis were the main causes of early postoperative death. Conclusion:SLT can achieve results comparable to those of WLT and LDLT in mature technology liver transplant centers, but it needs to go through a certain time learning curve.
5. Advances of pathogenesis and drug development in amyotrophic lateral sclerosis
Yu-Jun ZHOU ; Qiu-Yu CHEN ; Zhuo SUN ; Jing-Shu TANG ; Jia-Qi LAN ; Lei WU ; Ying PENG
Chinese Pharmacological Bulletin 2024;40(2):201-207
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting both upper and lower motor neurons. ALS patients develop progressive muscle atrophy, muscle weak and paralysis, finally died of respiratory failure. ALS is characterized by fast aggression and high mortality. What' s more, the disease is highly heterogeneous with unclear pathogenesis and lacks effective drugs for therapy. In this review, we summarize the main pathological mechanisms and the current drugs under development for ALS, which may provide a reference for the drug discovery in the future.
6.Development History and Frontier Research Progress of Pharmacokinetics of Traditional Chinese Medicine
Li-Jun ZHU ; Zhuo-Ru HE ; Cai-Yan WANG ; Dan-Yi LU ; Jun-Ling YANG ; Wei-Wei JIA ; Chen CHENG ; Yu-Tong WANG ; Liu YANG ; Zhi-Peng CHEN ; Bao-Jian WU ; Rong ZHANG ; Chuan LI ; Zhong-Qiu LIU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(10):2746-2757
Pharmacokinetics of traditional Chinese medicine(TCM)is a discipline that adopts pharmacokinetic research methods and techniques under the guidance of TCM theories to elucidate the dynamic changes in the absorption,distribution,metabolism and excretion of active ingredients,active sites,single-flavour Chinese medicinal and compounded formulas of TCM in vivo.However,the sources and components of TCM are complex,and the pharmacodynamic substances and mechanisms of action of the majority of TCM are not yet clear,so the pharmacokinetic study of TCM is later than that of chemical medicines,and is far more complex than that of chemical medicines,and its development also confronts with challenges.The pharmacokinetic study of TCM originated in the 1950s and has experienced more than 70 years of development from the initial in vivo study of a single active ingredient,to the pharmacokinetic and pharmacodynamic study of active ingredients,to the pharmacokinetic study of compound and multi-component of Chinese medicine.In recent years,with the help of advanced extraction,separation and analysis technologies,gene-editing animals and cell models,multi-omics technologies,protein purification and structure analysis technologies,and artificial intelligence,etc.,the pharmacokinetics of TCM has been substantially applied in revealing and elucidating the pharmacodynamic substances and mechanisms of action of Chinese medicines,research and development of new drugs of TCM,scientific and technological upgrading of large varieties of Chinese patent medicines,as well as guiding the rational use of medicines in clinics.Pharmacokinetic studies of TCM have made remarkable breakthroughs and significant development in theory,methodology,technology and application.In this paper,the history of the development of pharmacokinetics of TCM and the progress of cutting-edge research was reviewed,with the aim of providing ideas and references for the pharmacokinetics of TCM and related research.
7.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
8.Neutrophil-to-lymphocyte ratio may help predict pediatric testicular torsion in chlidren with acute scrotal pain before surgery
Xianya HE ; Chen WANG ; Yongjun YANG ; Junjie CHEN ; Xuecheng WU ; Zhuo LI ; Zhe LIU ; Guangqing SONG ; Yili TENG ; Jia CHEN ; Hongwei WANG ; Huayi ZHENG ; Yuanwei LI ; Qiang LU
Journal of Modern Urology 2024;29(9):785-789
Objective To explore the feasibility and accuracy of neutrophil-to-lymphocyte ratio(NLR)in the prediction of testicular torsion(TT)in children with acute scrotal pain.Methods A retrospective case-control study was performed on 158 pediatric patients with ultrasound suspicion of TT who underwent surgical testicular examination during Jan.2017 and Jan.2024.The patients were divided into TT group and non-TT group.Clinical data and laboratory data at admission were analyzed.Sensitivity and specificity of NLR to TT were determined with the area under the curve(AUC)represented on the receiver operating characteristic(ROC)curves.Results There were with no statistically significant differences in clinical data between the two groups(P>0.05).The NLR was significantly higher in the TT group than in the non-TT group[(4.82±2.37)vs.(2.85±0.75),P<0.05].The optimal cut-off value of TT predicted by NLR was 2.07,the AUC was 0.809(95%CI:0.709-0.909),and the sensitivity and specificity were 97.9%and 93.3%,respectively,which were significantly higher than other factors.Conclusion For suspicious ultrasound diagnosis of pediatric acute scrotal pain cases,NLR can be used to predict the possibility of TT and may help to evaluate the urgent surgical treatment in these patients.
9.The expression mechanism of programmed cell death 1 ligand 1 and its role in immunomodulatory ability of mesenchymal stem cells
Zhuo CHEN ; Meng-Wei YAO ; Xiang AO ; Qing-Jia GONG ; Yi YANG ; Jin-Xia LIU ; Qi-Zhou LIAN ; Xiang XU ; Ling-Jing ZUO
Chinese Journal of Traumatology 2024;27(1):1-10
Programmed cell death 1 ligand 1 (PD-L1) is an important immunosuppressive molecule, which inhibits the function of T cells and other immune cells by binding to the receptor programmed cell death-1. The PD-L1 expression disorder plays an important role in the occurrence, development, and treatment of sepsis or other inflammatory diseases, and has become an important target for the treatment of these diseases. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with multiple differentiation potential. In recent years, MSCs have been found to have a strong immunosuppressive ability and are used to treat various inflammatory insults caused by hyperimmune diseases. Moreover, PD-L1 is deeply involved in the immunosuppressive events of MSCs and plays an important role in the treatment of various diseases. In this review, we will summarize the main regulatory mechanism of PD-L1 expression, and discuss various biological functions of PD-L1 in the immune regulation of MSCs.
10.Action mechanisms of Qianlie Jindan Tablets on chronic nonbcterial prostatitis in rats:An exploration based on non-targeted urine metabolomics
Teng-Fei CHEN ; Zhi-Chao JIA ; Zhuo-Zhuo SHI ; Jun-Guo MA ; Xiao-Lin LI ; Chong-Fu ZHONG
National Journal of Andrology 2024;30(6):531-539
Objective:To explore the mechanisms of Qianlie Jindan Tablets(QLJD)acting on chronic nonbacterial prostatitis(CNP)in rats based on non-targeted urine metabolomics.Methods:According to the body mass index,we equally randomized 30 eight-week-old male SD rats into a blank control,a CNP model control and a QLJD medication group.We established the CNP model in the latter groups and,from the 4th day of modeling,treated the rats in the blank and model control groups intragastrically with nor-mal saline and those in the QLJD medication group with QLJD suspension,qd,for 30 successive days.Then we detected the changes in the metabolites of the rats by ultra-high-performance liquid chromatography-tandem mass spectrometry,and identified the differential metabolites in different groups by multivariate statistical analysis,followed by functional annotation of the differential metabolites.Results:Eight common metabolites were identified by metabolomics analysis,of which 5 were decreased in the CNP model controls and increased in the QLJD medication group,while the other 3 increased in the former and decreased in the latter group.Creatinine and genistein were important differential metabolites,and the arginine and proline metabolic pathways and isoflavone biosynthesis pathways were the main ones for QLJD acting on CNP.Compared with the blank controls,the model controls showed up-regulated arginine and proline metabolic pathways,increased production of creatinine,down-regulated isoflavone biosynthetic pathway and decreased produc-tion of genistein.The above changes in the model controls were all reversed in the QLJD medication group.Conclusion:QLJD acts effectively on CNP in male rats by regulating L-arginine and proline metabolic pathways,as well as the isoflavone biosynthesis pathway and naringenin metabolism.

Result Analysis
Print
Save
E-mail