1.Severity Assessment Parameters and Diagnostic Technologies of Obstructive Sleep Apnea
Zhuo-Zhi FU ; Ya-Cen WU ; Mei-Xi LI ; Ping-Ping YIN ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(1):147-161
Obstructive sleep apnea (OSA) is an increasingly widespread sleep-breathing disordered disease, and is an independent risk factor for many high-risk chronic diseases such as hypertension, coronary heart disease, stroke, arrhythmias and diabetes, which is potentially fatal. The key to the prevention and treatment of OSA is early diagnosis and treatment, so the assessment and diagnostic technologies of OSA have become a research hotspot. This paper reviews the research progresses of severity assessment parameters and diagnostic technologies of OSA, and discusses their future development trends. In terms of severity assessment parameters of OSA, apnea hypopnea index (AHI), as the gold standard, together with the percentage of duration of apnea hypopnea (AH%), lowest oxygen saturation (LSpO2), heart rate variability (HRV), oxygen desaturation index (ODI) and the emerging biomarkers, constitute a multi-dimensional evaluation system. Specifically, the AHI, which measures the frequency of sleep respiratory events per hour, does not fully reflect the patients’ overall sleep quality or the extent of their daytime functional impairments. To address this limitation, the AH%, which measures the proportion of the entire sleep cycle affected by apneas and hypopneas, deepens our understanding of the impact on sleep quality. The LSpO2 plays a critical role in highlighting the potential severe hypoxic episodes during sleep, while the HRV offers a different perspective by analyzing the fluctuations in heart rate thereby revealing the activity of the autonomic nervous system. The ODI provides a direct and objective measure of patients’ nocturnal oxygenation stability by calculating the number of desaturation events per hour, and the biomarkers offers novel insights into the diagnosis and management of OSA, and fosters the development of more precise and tailored OSA therapeutic strategies. In terms of diagnostic techniques of OSA, the standardized questionnaire and Epworth sleepiness scale (ESS) is a simple and effective method for preliminary screening of OSA, and the polysomnography (PSG) which is based on recording multiple physiological signals stands for gold standard, but it has limitations of complex operations, high costs and inconvenience. As a convenient alternative, the home sleep apnea testing (HSAT) allows patients to monitor their sleep with simplified equipment in the comfort of their own homes, and the cardiopulmonary coupling (CPC) offers a minimal version that simply analyzes the electrocardiogram (ECG) signals. As an emerging diagnostic technology of OSA, machine learning (ML) and artificial intelligence (AI) adeptly pinpoint respiratory incidents and expose delicate physiological changes, thus casting new light on the diagnostic approach to OSA. In addition, imaging examination utilizes detailed visual representations of the airway’s structure and assists in recognizing structural abnormalities that may result in obstructed airways, while sound monitoring technology records and analyzes snoring and breathing sounds to detect the condition subtly, and thus further expands our medical diagnostic toolkit. As for the future development directions, it can be predicted that interdisciplinary integrated researches, the construction of personalized diagnosis and treatment models, and the popularization of high-tech in clinical applications will become the development trends in the field of OSA evaluation and diagnosis.
2.Effect of Wenpi tongluo kaiqiao formula against neuronal necroptosis in mice with Alzheimer’s disease and its mechanism
Xiaomin ZHU ; Wei CHEN ; Yulan FU ; Guifeng ZHUO ; Yingrui HUANG ; Ying ZHANG ; Lin WU
China Pharmacy 2025;36(9):1046-1051
OBJECTIVE To investigate the effects and mechanism of Wenpi tongluo kaiqiao formula (WPTL) against neuronal necroptosis in Alzheimer’s disease (AD) mice based on the Z-DNA binding protein 1 (ZBP1)/mixed lineage kinase domain-like protein (MLKL) signaling pathway. METHODS Forty APP/PS1 transgenic AD mice were randomly divided into model group, WPTL low-dose (WPTL-L) group (10.4 g/kg, calculated by the raw medicine), WPTL high-dose (WPTL-H) group (20.8 g/kg, calculated by the raw medicine) and donepezil hydrochloride group (3 mg/kg), with 10 mice in each group; another 10 C57BL/6J mice were selected as normal control group. Intragastric administration, once a day, for 30 consecutive days. Twenty-four hours after the last administration, Morris water maze test was performed to evaluate learning and memory abilities; the pathological morphology of hippocampal tissues was observed; the serum levels of tumor necrosis factor-α (TNF-α) and interleukin-4 (IL-4) were determined; the expressions of amyloid precursor protein (APP), Tau protein, and ZBP1/MLKL signaling pathway-related proteins in hippocampal tissues were detected; the positive expression of phosphorylated receptor-interacting protein kinase 3 (p-RIPK3) in the neurons of hippocampal tissues and mRNA expression of ZBP1 were measured in hippocampal tissues. RESULTS Compared with normal control group, the escape latency of mice in model group was prolonged significantly on day 3 to 5 (P<0.05), the times of crossing platform reduced significantly (P<0.05), and obvious pathological changes were observed in the hippocampal tissue. The level of TNF- α, the expressions of APP, p-Tau and ZBP1, the phosphorylation levels of RIPK1, RIPK3 and MLKL, the fluorescence intensity of p-RIPK3 as well as the mRNA expression of ZBP1 were significantly increased (P<0.05), while the serum level of IL-4 was decreased significantly (P<0.05). Compared with model group, above indexes were reversed significantly in administration groups (P<0.05), and pathological damage of hippocampal tissue was alleviated. CONCLUSIONS WPTL can inhibit the ZBP1/MLKL signaling pathway, reduce neuronal necroptosis in AD mice, and inhibit inflammatory responses, thereby improving learning and spatial memory abilities in AD mice.
3.Anti-vascular dementia effect of Yifei xuanfei jiangzhuo formula by inhibiting mitochondrial fission
Yulan FU ; Wei CHEN ; Guifeng ZHUO ; Xiaomin ZHU ; Yingrui HUANG ; Jinzhi ZHANG ; Fucai YANG ; Ying ZHANG ; Lin WU
China Pharmacy 2025;36(15):1859-1865
OBJECTIVE To investigate the intervention effect and its potential mechanism of Yifei xuanfei jiangzhuo formula by inhibiting mitochondrial fission in a vascular dementia (VaD) model rats. METHODS VaD rat model was established by bilateral common carotid artery ligation. The experimental animals were randomly divided into sham operation group (SHAM), model group (MOD),Yifei xuanfei jiangzhuo formula low-dose group (YFXF-L), Yifei xuanfei jiangzhuo formula high-dose group (YFXF-H), and Donepezil hydrochloride group (positive control), with 9 animals in each group. After 30 days of intervention, the spatial learning memory ability was assessed by Morris water maze experiment; HE staining was used to observe histopathological changes in CA1 area of hippocampus; ELISA was used to detect the levels of serum inflammatory factors [interleukin-1β (IL-1β) and IL-4]; Western blot was used to detect the expressions of heat shock protein 90 (HSP90)/mixed lineage kinase domain-like protein (MLKL)/dynamin-related protein 1 (Drp1) pathway-related proteins, mitochondrial fusion proteins (MFN1, MFN2), and adenosine triphosphate synthase 5A (ATP5A) in hippocampal tissues. The immunohistochemistry was used to detect the level of phosphorylated MLKL (p-MLKL); real-time fluorescence quantitative PCR was adopted to detect mRNA expressions ofHSP90, MFN1, MFN2 and ATP5A. RESULTS Compared with SHAM group, the escape latency of rats in the MOD group was significantly prolonged, the number of crossing the platform was significantly reduced, and the hippocampal tissues showed typical neuronal damage characteristics, the positive expression level of p-MLKL and the serum level of IL-1β significantly increased, while the serum level of IL-4 significantly decreased, the protein and mRNA expression of HSP90, as well as the protein expressions of p-MLKL/MLKL and p-Drp1(Ser616)/Drp1 were all significantly increased in hippocampal tissue, the protein and mRNA expressions of MFN1, MFN2 and ATP5A, and protein expression of p-Drp1(Ser637)/Drp1 were all significantly decreased (P<0.05). After the intervention of Yifei xuanfei jiangzhuo formula, above indicators in each treatment group were all significantly reversed (P<0.05). CONCLUSIONS Yifei xuanfei jiangzhuo formula may alleviate neuronal damage and neuroinflammatory responses in VaD rats by regulating the HSP90/MLKL/Drp1 signaling pathway, inhibiting mitochondrial fission, thereby maintaining mitochondrial dynamic balance and improving mitochondrial function.
4.The in vitro and in vivo inhibitory effects of metformin on esophageal squamous cell carcinoma cells
Shan LIU ; Meng HU ; Zhuo ZHANG ; Fei XIONG ; Pingshang WU ; Xueman LI
China Pharmacy 2025;36(17):2113-2119
OBJECTIVE To explore the in vitro and in vivo inhibitory effects and mechanism of metformin on the malignant biological behavior of esophageal squamous cell carcinoma (ESCC) cells by the hypoxia inducible factor-1α (HIF-1α)/interleukin-8 (IL-8) signaling pathway. METHODS Human ESCC TE1 cells were assigned into blank group, metformin low-, medium-, and high-dose groups (0.5, 1, 2 mmol/L), IDF-11774 (HIF-1α inhibitor) group (20 μmol/L), and high-dose metformin+HIF-1α activator dimethyloxalylglycine (DMOG) group. After 24 h treatment, cell proliferation [measured by the positive rate of 5-ethynyl- 2′-deoxyuridine (EdU) and optical density at 450 nm (OD450 value)], apoptosis, invasion and migration as well as mRNA expressions of proliferating cell nuclear antigen (PCNA), Bcl-2 interacting mediator of cell death (Bim), migration and invasion enhancer 1 (MIEN1), and matrix metalloproteinase-9 (MMP-9), and protein expressions of HIF-1α and IL-8 in the cells were detected. The xenograft tumor model of nude mice was established. Thirty nude mice were randomly divided into blank group, metformin low-, medium-, and high-dose groups (i.g. administration of metformin 62.5, 125, 250 mg/kg+i.p. administration of equal volume of normal saline), IDF-11774 group (i.g. administration of 50 mg/kg IDF-11774+i.p. administration of equal volume of normal saline) and high-dose metformin+DMOG group (i.g. administration of metformin 250 mg/kg+i.p. administration of DMOG 250 mg/kg), with 5 mice in each group. They were given relevant medicine, once a day, for 4 consecutive weeks; the mass and volume of the tumor and protein expressions of HIF-1α and IL-8 in the tumor tissue were determined. RESULTS The EdU positive rate, OD450 value, cell invasion number, scratch healing rate, mRNA expressions of PCNA, MIEN1 and MMP-9, protein expressions of HIF-1α and IL-8, as well as the mass and volume of transplanted tumors and protein expressions of HIF-1α and IL-8 in tumor tissues were decreased by metformin in concentration/dose-dependent manner (P<0.05). Additionally,metformin increased the apoptosis rate and mRNA expression of Bim in cells (P<0.05). The trend of changes in corresponding indicators in the IDF-11774 group was consistent with that in the metformin groups, whereas DMOG could significantly attenuate the aforementioned effects of high-concentration/high-dose metformin (P<0.05). CONCLUSIONS Metformin can inhibit the proliferation, invasion, migration of TE1 cells, and tumor growth of nude mice, and induce cell apoptosis, the mechanism of which may be related to the inhibition of HIF-1α/IL-8 signaling pathway.
5.Targeting PPARα for The Treatment of Cardiovascular Diseases
Tong-Tong ZHANG ; Hao-Zhuo ZHANG ; Li HE ; Jia-Wei LIU ; Jia-Zhen WU ; Wen-Hua SU ; Ju-Hua DAN
Progress in Biochemistry and Biophysics 2025;52(9):2295-2313
Cardiovascular disease (CVD) remains one of the leading causes of mortality among adults globally, with continuously rising morbidity and mortality rates. Metabolic disorders are closely linked to various cardiovascular diseases and play a critical role in their pathogenesis and progression, involving multifaceted mechanisms such as altered substrate utilization, mitochondrial structural and functional dysfunction, and impaired ATP synthesis and transport. In recent years, the potential role of peroxisome proliferator-activated receptors (PPARs) in cardiovascular diseases has garnered significant attention, particularly peroxisome proliferator-activated receptor alpha (PPARα), which is recognized as a highly promising therapeutic target for CVD. PPARα regulates cardiovascular physiological and pathological processes through fatty acid metabolism. As a ligand-activated receptor within the nuclear hormone receptor family, PPARα is highly expressed in multiple organs, including skeletal muscle, liver, intestine, kidney, and heart, where it governs the metabolism of diverse substrates. Functioning as a key transcription factor in maintaining metabolic homeostasis and catalyzing or regulating biochemical reactions, PPARα exerts its cardioprotective effects through multiple pathways: modulating lipid metabolism, participating in cardiac energy metabolism, enhancing insulin sensitivity, suppressing inflammatory responses, improving vascular endothelial function, and inhibiting smooth muscle cell proliferation and migration. These mechanisms collectively reduce the risk of cardiovascular disease development. Thus, PPARα plays a pivotal role in various pathological processes via mechanisms such as lipid metabolism regulation, anti-inflammatory actions, and anti-apoptotic effects. PPARα is activated by binding to natural or synthetic lipophilic ligands, including endogenous fatty acids and their derivatives (e.g., linoleic acid, oleic acid, and arachidonic acid) as well as synthetic peroxisome proliferators. Upon ligand binding, PPARα activates the nuclear receptor retinoid X receptor (RXR), forming a PPARα-RXR heterodimer. This heterodimer, in conjunction with coactivators, undergoes further activation and subsequently binds to peroxisome proliferator response elements (PPREs), thereby regulating the transcription of target genes critical for lipid and glucose homeostasis. Key genes include fatty acid translocase (FAT/CD36), diacylglycerol acyltransferase (DGAT), carnitine palmitoyltransferase I (CPT1), and glucose transporter (GLUT), which are primarily involved in fatty acid uptake, storage, oxidation, and glucose utilization processes. Advancing research on PPARα as a therapeutic target for cardiovascular diseases has underscored its growing clinical significance. Currently, PPARα activators/agonists, such as fibrates (e.g., fenofibrate and bezafibrate) and thiazolidinediones, have been extensively studied in clinical trials for CVD prevention. Traditional PPARα agonists, including fenofibrate and bezafibrate, are widely used in clinical practice to treat hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. These fibrates enhance fatty acid metabolism in the liver and skeletal muscle by activating PPARα, and their cardioprotective effects have been validated in numerous clinical studies. Recent research highlights that fibrates improve insulin resistance, regulate lipid metabolism, correct energy metabolism imbalances, and inhibit the proliferation and migration of vascular smooth muscle and endothelial cells, thereby ameliorating pathological remodeling of the cardiovascular system and reducing blood pressure. Given the substantial attention to PPARα-targeted interventions in both basic research and clinical applications, activating PPARα may serve as a key therapeutic strategy for managing cardiovascular conditions such as myocardial hypertrophy, atherosclerosis, ischemic cardiomyopathy, myocardial infarction, diabetic cardiomyopathy, and heart failure. This review comprehensively examines the regulatory roles of PPARα in cardiovascular diseases and evaluates its clinical application value, aiming to provide a theoretical foundation for further development and utilization of PPARα-related therapies in CVD treatment.
6.Epidemiology, pathogenesis, diagnosis, and treatment of inflammatory bowel disease: Insights from the past two years.
Jian WAN ; Jiaming ZHOU ; Zhuo WANG ; Dan LIU ; Hao ZHANG ; Shengmao XIE ; Kaichun WU
Chinese Medical Journal 2025;138(7):763-776
Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a chronic inflammation of the gastrointestinal tract with unknown etiology. The cause of IBD is widely considered multifactorial, with prevailing hypotheses suggesting that the microbiome and various environmental factors contribute to inappropriate activation of the mucosal immune system in genetically susceptible individuals. Although the incidence of IBD has stabilized in Western countries, it is rapidly increasing in newly industrialized countries, particularly China, making IBD a global disease. Significant changes in multiple biomarkers before IBD diagnosis during the preclinical phase provide opportunities for earlier diagnosis and intervention. Advances in technology have driven the development of telemonitoring tools, such as home-testing kits for fecal calprotectin, serum cytokines, and therapeutic drug concentrations, as well as wearable devices for testing sweat cytokines and heart rate variability. These tools enable real-time disease activity assessment and timely treatment strategy adjustments. A wide range of novel drugs for IBD, including interleukin-23 inhibitors (mirikizumab, risankizumab, and guselkumab) and small-molecule drugs (etrasimod and upadacitinib), have been introduced in the past few years. Despite these advancements, approximately one-third of patients remain primary non-responders to the initial treatment, and half eventually lose response over time. Precision medicine integrating multi-omics data, advanced combination therapy, and complementary approaches, including stem cell transplantation, psychological therapies, neuromodulation, and gut microbiome modulation therapy, may offer solutions to break through the therapeutic ceiling.
Humans
;
Inflammatory Bowel Diseases/therapy*
7.Mechanism of Syngnathus extract in treating knee osteoarthritis of rats via regulating PI3K/Akt/mTOR signaling pathway.
Quan-Wei ZHENG ; Guo-Wei WANG ; Si-Xian WU ; Tao ZHUO ; Yi HE ; Jian-Hang LIU
China Journal of Chinese Materia Medica 2025;50(9):2442-2449
To investigate the mechanism of action of Syngnathus extract in treating knee osteoarthritis of rats, forty-eight male SD rats were randomly divided into the blank group, model group, positive drug group, as well as low-dose, medium-dose, and high-dose groups of Syngnathus extract. The rat model of knee osteoarthritis was constructed by intra-articular injection of sodium iodoacetate. After successful modeling, celecoxib(18 mg·kg~(-1)·d~(-1)) and Syngnathus extract(0.4, 0.8, and 1.6 g·kg~(-1)·d~(-1)) were given in different groups by gavage intervention for two weeks. Hematoxylin-eosin(HE) staining was used to observe the histopathological changes of cartilage in knee joints, and enzyme-linked immunosorbent assay(ELISA) was used to detect the expression level of inflammatory factors in serum. Real-time fluorescence quantitative PCR, Western blot, and immunohistochemistry were used to detect the levels of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target protein of rapamycin(mTOR) pathway-related mRNA and protein expression. The results showed that, comparied with the blank group, the cartilage surface of the knee joints of rats in the model group was uneven, with disorganized levels and defective cartilage tissue. The serum levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) and the mRNA levels of PI3K, Akt, and mTOR in cartilage tissue, as well as the protein expression levels of phosphorylated PI3K(p-PI3K)/PI3K, phosphorylated Akt(p-Akt)/Akt, phosphorylated mTOR(p-mTOR)/mTOR, and P62 were significantly increased. Beclin1 protein expression was decreased. Comparied with the model group, the number of chondrocytes in the knee joint of rats in each group of Syngnathus extract increased, and the arrangement of chondrocytes was relatively neat. The cartilage layer was restored, and the serum levels of IL-1β, IL-6, and TNF-α, as well as the mRNA expression levels of PI3K, Akt, and mTOR in cartilage tissue were significantly reduced. The protein expression levels of p-PI3K/PI3K, p-Akt/Akt, p-mTOR/mTOR, and P62 were significantly reduced in the rats in the middle-dose and high-dose groups of Syngnathus extract, and the Beclin1 protein expression was significantly increased. The protein expression levels of p-PI3K/PI3K, p-Akt/Akt, and P62 in rats in the low-dose group of Syngnathus extract were significantly reduced. In summary, Syngnathus extract may be used to treat knee osteoarthritis by inhibiting the expression of PI3K/Akt/mTOR signaling pathway, so as to alleviate the inflammatory response in the organism, enhance the autophagy activity of chondrocytes, and reduce the apoptosis of chondrocytes.
Animals
;
TOR Serine-Threonine Kinases/genetics*
;
Male
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Rats
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Humans
8.Intervention mechanism of Yiqi Fumai Formula in mice with experimental heart failure based on "heart-gut axis".
Zi-Xuan ZHANG ; Yu-Zhuo WU ; Ke-Dian CHEN ; Jian-Qin WANG ; Yang SUN ; Yin JIANG ; Yi-Xuan LIN ; He-Rong CUI ; Hong-Cai SHANG
China Journal of Chinese Materia Medica 2025;50(12):3399-3412
This paper aimed to investigate the therapeutic effect and mechanism of action of the Yiqi Fumai Formula(YQFM), a kind of traditional Chinese medicine(TCM), on mice with experimental heart failure based on the "heart-gut axis" theory. Based on the network pharmacology integrated with the group collaboration algorithm, the active ingredients were screened, a "component-target-disease" network was constructed, and the potential pathways regulated by the formula were predicted and analyzed. Next, the model of experimental heart failure was established by intraperitoneal injection of adriamycin at a single high dose(15 mg·kg~(-1)) in BALB/c mice. After intraperitoneal injection of YQFM(lyophilized) at 7.90, 15.80, and 31.55 mg·d~(-1) for 7 d, the protective effects of the formula on cardiac function were evaluated using indicators such as ultrasonic electrocardiography and myocardial injury markers. Combined with inflammatory factors in the cardiac and colorectal tissue, as well as targeted assays, the relevant indicators of potential pathways were verified. Meanwhile, 16S rDNA sequencing was performed on mouse fecal samples using the Illumina platform to detect changes in gut flora and analyze differential metabolic pathways. The results show that the administration of injectable YQFM(lyophilized) for 7 d significantly increased the left ventricular end-systolic internal diameter, fractional shortening, and ejection fraction of cardiac tissue of mice with experimental heart failure(P<0.05). Moreover, markers of myocardial injury were significantly decreased(P<0.05), indicating improved cardiac function, along with significantly suppressed inflammatory responses in cardiac and intestinal tissue(P<0.05). Additionally, the species of causative organisms was decreased, and the homeostasis of gut flora was improved, involving a modulatory effect on PI3K-Akt signaling pathway-related inflammation in cardiac and colorectal tissue. In conclusion, YQFM can affect the "heart-gut axis" immunity through the homeostasis of the gut flora, thereby exerting a therapeutic effect on heart failure. This finding provides a reference for the combination of TCM and western medicine to prevent and treat heart failure based on the "heart-gut axis" theory.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Heart Failure/microbiology*
;
Mice
;
Mice, Inbred BALB C
;
Male
;
Disease Models, Animal
;
Gastrointestinal Microbiome/drug effects*
;
Heart/physiopathology*
;
Humans
;
Signal Transduction/drug effects*
9.Mechanism of Hippocampus in treatment of knee osteoarthritis based on network pharmacology, molecular docking, and experimental verification.
Tao ZHUO ; Guo-Wei WANG ; Si-Xian WU ; Quan-Wei ZHENG ; Yi HE ; Jian-Hang LIU
China Journal of Chinese Materia Medica 2025;50(14):4026-4036
This study predicts the potential mechanism of Hippocampus in the treatment of knee osteoarthritis(KOA) through network pharmacology, with preliminary verification using molecular docking and animal experiments. The database was used to screen the active chemical components of Hippocampus and the targets of KOA, and Gene Ontology(GO) functional analysis, Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis, and molecular docking were performed on the relevant core targets to preliminarily explore the potential targets and mechanisms of Hippocampus in the treatment of KOA. A rat KOA model was constructed by intra-articular injection of sodium iodoacetate, and the rats were intervened with different doses of Hippocampus decoction and celecoxib. The expression of relevant targets was detected through hematoxylin-eosin(HE) staining, enzyme-linked immunosorbent assay(ELISA), RT-qPCR, and Western blot to further validate the network pharmacology results. A total of 23 drug-like components of the Hippocampus were screened, and 128 common targets with KOA were identified, involving interleukin-17(IL-17) signaling pathway, transcription factor(FoxO) signaling pathway, tumor necrosis factor(TNF) signaling pathway. Molecular docking results showed that the screened core chemical components exhibited good affinity with key targets. HE staining demonstrated that Hippocampus improved the morphology of the cartilage layer. ELISA confirmed that Hippocampus significantly reduced the levels of IL-6 and TNF-α in the serum of KOA rats. Western blot and RT-qPCR analysis showed that Hippocampus significantly reduced the expression of IL-6, TNF-α, matrix metalloproteinase(MMP) 13, IL-17A, nuclear factor κB activator 1(ACT1), tumor necrosis factor receptor-associated factor 6(TRAF6) and nuclear factor κB(NF-κB) in cartilage tissue. The results suggest that Hippocampus can alleviate the degree of joint damage in the KOA rat model induced by sodium iodoacetate. The mechanism of action is related to the inhibition of the IL-17 signaling pathway, reduction of inflammation, and inhibition of extracellular matrix(ECM) degradation.
Animals
;
Molecular Docking Simulation
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Network Pharmacology
;
Male
;
Osteoarthritis, Knee/metabolism*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Humans
;
Interleukin-17/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Disease Models, Animal
;
Hippocampus/chemistry*
10.Clinical efficacy of autologous apheresis platelet-rich plasma combined with adjustable titanium plate fixation in the treatment of Rockwood type Ⅲ acromioclavicular joint dislocation.
Wei CAI ; An-Ping WU ; Hai-Tao TAN ; Gao-Bing XU ; Zhuo-Yi FU ; Yong PENG ; Di-Shi GUI ; Qiao-Mei PU
China Journal of Orthopaedics and Traumatology 2025;38(6):587-593
OBJECTIVE:
To explore clinical efficacy of autologous platelet-rich plasma(PRP) in treating Rockwood type Ⅲ acromioclavicular dislocation.
METHODS:
From January 2019 to July 2021, 32 patients with Rockwood type Ⅲ acromioclavicular dislocation were treated with minimally invasive adjustable titanium plate internal fixation, and were divided into PRP group and control group according to whether PRP treatment was performed, with 16 patients in each group. In PRP group, there were 10 males and 6 females, aged from 28 to 47 years old with an average of (36.75±7.14) years old;the time from injury to surgery ranged from 1 to 31 h with an average of (26.13±3.98) h;5 patients on the left side and 11 patients on the right side;PRP was injected once during operation and the 4th and 8th weeks after operation respectively. In control group, there were 8 males and 8 females, aged from 30 to 52 years old with an average of (38.50±5.48) years old; the time from injury to surgery ranged from 1 to 29 h with an average of (25.48±3.11) h;7 patients on the left side and 9 patients on the right side; minimally invasive surgical treatment was performed. Visual analogue scale(VAS) was used to evaluate pain and Constant-Murley score for shoulder joint function was used to evaluate the recovery of shoulder joint movement function before operation and 1, 3, 6, and 12 months after operation respectively.
RESULTS:
All patients were followed up for 12 to 28 months with an average of (18.3±5.2) months. All incisions patients healed well without adverse events such as infection. Postoperative VAS of PRP group at 1, 3, and 6 months were (5.5±1.2), (3.7±1.6), and (2.4±1.2), respectively, while were lower than those of control group (6.6±1.4), (4.9±1.1), and (3.7±1.3), respectively;and had statistical differences between two groups (P<0.05). There was no statistically significant difference in VAS between two groups before operation and 12 months after operation (P>0.05). Postoperative Constant-Murley scores of PRP group at 1, 3, and 6 months were (64.09±11.61), (73.19±12.89), and (82.61±14.81) points, respectively, which were higher than those of control group were (52.32±17.42), (61.65±14.43), and (72.52±11.04) respectively;and the differences were statistically significant (P<0.05). There was no statistically significant difference in Constant-Murley scores at 12 months after operation between two groups (P>0.05). In PRP group, there was no statistically significant difference at 6 months and 12 months after operation (P>0.05), while there were statistically significant differences at the other time points (1 month after operation compared with before operation, 3 months after operation compared with 6 months after operation, and 3 months after operation compared with 1 month after operation) (P<0.05). In control group, there was no statistically significant difference when comparing 1 month and 3 months after operation (P>0.05), while at the other time points (1 month after operation with before operation, 3 months after operation with 6 months after operation, and 6 months after operation with 12 months after operation), the differences were all statistically significant (P<0.05).
CONCLUSION
Adjustable titanium plate fixation combined with postoperative injection of PRP for the treatment of Rockwood type III acromioclavicular joint dislocation has effect of promoting the recovery of shoulder joint function and reducing pain.
Humans
;
Male
;
Female
;
Adult
;
Middle Aged
;
Platelet-Rich Plasma
;
Acromioclavicular Joint/surgery*
;
Bone Plates
;
Titanium
;
Joint Dislocations/therapy*
;
Fracture Fixation, Internal/methods*

Result Analysis
Print
Save
E-mail