2.Mechanism of L-perilla alcohol in intervening hypoxic pulmonary hypertension based on network pharmacology and experimental verification.
Yu-Rong WANG ; Yang YU ; Zhuo-Sen LIANG ; Li TONG ; Dian-Xiang LU ; Xing-Mei NAN
China Journal of Chinese Materia Medica 2025;50(1):209-217
The mechanism of L-perilla alcohol(L-POH) in intervening hypoxic pulmonary hypertension(HPAH) was discussed based on network pharmacology, and experimental verification. The active components and potential targets of the volatile oil of Rhodiola tangutica(VORA) in the intervention of HPAH were screened by network pharmacology. The biological process of Gene Ontology(GO) and the signaling pathway enrichment of Kyoto Encyclopedia of Genes and Genomes(KEGG) were analyzed for the core targets, and a "component-common target-disease" network was constructed. Four active components were screened from VORA: L-POH, linalool, geraniol, and(-)-myrtenol. The core targets for treating HPAH were HSP90AA1, AKT1, ESR1, PIK3CA, EP300, EGFR, and JAK2. GO enrichment analysis mainly involved biological processes such as reaction to hypoxia, heme binding, and steroid binding. KEGG enrichment analysis mainly involved hypoxia-inducing factor 1(HIF-1) signaling pathway, phosphatidylinositol 3-kinase/protein kinase B(PI3K/AKT) signaling pathway, and Janus kinase/activator of signal transduction and transcription(JAK/STAT) signaling pathway. The vasodilation effects of the four active components were screened by perfusion experiment of extracorporeal vascular rings, and the mechanism of the main active component L-POH was studied by channel blockers. The inhibitory effects of the four active components on the proliferation of pulmonary artery smooth muscle cells(PASMCs) induced by hypoxia were screened by cell proliferation experiment, and the mechanism of the main active component L-POH was studied by flow cytometry, cell cycle experiment, and Western blot. The results showed that L-POH could directly act on vascular smooth muscle to relax pulmonary arterioles, induce ATP-sensitive potassium channels to open, and inhibit extracellular Ca~(2+) influx through voltage-gated calcium channels to relax blood vessels. In addition, L-POH could inhibit the abnormal proliferation of PASMCs induced by hypoxia and promote its apoptosis, and its mechanism may be related to the increase in Bax protein expression and the decrease in p-JAK2, p-STAT3, Bcl-2, and cyclinA2 protein expression. In summary, L-POH can interfere with HPAH by relaxing pulmonary arterioles and inhibiting the proliferation of smooth muscle cells.
Network Pharmacology
;
Animals
;
Hypertension, Pulmonary/physiopathology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Hypoxia/metabolism*
;
Rhodiola/chemistry*
;
Signal Transduction/drug effects*
;
Humans
;
Monoterpenes/chemistry*
;
Male
;
Cell Proliferation/drug effects*
;
Rats, Sprague-Dawley
3.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats
4.Rational use of drug and scientific regulation based on effect-toxicity bidirectional action of Gardeniae Fructus.
Shuang CUI ; Jing-Zhuo TIAN ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(13):3635-3644
Gardeniae Fructus, a traditional Chinese medicine, has significant pharmacological activities such as clearing heat and detoxifying, promoting bile secretion and protecting liver injury. It is widely used in clinical practice for treating conditions like fever-induced restlessness, damp-heat jaundice, dysuria with pain, and fire-toxin sores. Gardeniae Fructus has been included in "list of items that are both food and medicine", so it is also used as an ingredient in food and health products. However, recent toxicological studies have shown that Gardeniae Fructus has certain potential hepatotoxicity, and its improper use may pose a risk. Therefore, it is necessary to clarify the dual regulatory effects and their scientific connotations of Gardeniae Fructus on efficacy and toxicity. Based on the current progress in clinical, pharmacological and toxicological researches, this paper will discuss the characteristics and possible mechanisms of the dual effects of efficacy and toxicity of Gardeniae Fructus, and propose thoughts on the rational clinical use and scientific supervision of Gardeniae Fructus.
Animals
;
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Fruit/chemistry*
;
Gardenia/chemistry*
;
Medicine, Chinese Traditional
;
Liver/drug effects*
5.Analysis of demographic and clinical characteristics of 744 inpatients with osteoporotic vertebral compression fractures.
Bo ZHANG ; Wenlong MA ; Weihua FENG ; Yanjin WANG ; Hanjie ZHUO ; Yihang QIAO ; Haobo LIANG ; Zhenjie ZHAO
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(3):354-361
OBJECTIVE:
To analyze the demographic and clinical characteristics of inpatients with osteoporotic vertebral compression fractures (OVCF) and provide a basis for clinical prevention and treatment.
METHODS:
A retrospective analysis was performed on the clinical data of 744 inpatients diagnosed with OVCF between January 2017 and December 2021 who met the inclusion criteria. Among them, 146 were male and 598 were female, with age ranging from 50 to 95 years (mean, 69.37 years). The demographic characteristics (gender, age, ethnicity, occupation, regional distribution, urban-rural distribution, and seasonal incidence) and clinical features [causes of injury, history of vertebral fractures, smoking and drinking history in males, comorbidities (hypertension, diabetes, coronary atherosclerotic heart disease, cerebral infarction), body mass index (BMI), blood lipid levels, menopausal age in females, vertebral bone mineral density T-value, number of vertebral fractures, and fracture segment distribution] of OVCF patients were analyzed. Multiple linear regression was used to analyze the independent risk factors of vertebral osteoporosis.
RESULTS:
The demographic analysis indicated that female patients with OVCF were significantly younger than male patients ( P<0.05). Significant differences were observed in the age distribution of OVCF between males and females ( P<0.05), with the highest proportion of male patients in the 70-79 years group (37.0%) and the highest proportion of female patients in the 60-69 years group (40.0%). From 2017 to 2021, the age of onset for OVCF gradually increased, with a similar trend observed for both genders. The distribution of occupations between genders also showed significant differences ( P<0.05); with the top three occupations for males being farmers (48.6%), retirees (24.7%), and workers (13.7%), while for females, the leading occupations were farmers (51.5%), retirees (19.4%), and service workers (10.0%). Female OVCF patients had higher BMI, vertebral bone mineral density T-value, history of vertebral fractures, hypertension prevalence, and blood lipid levels compared to male patients ( P<0.05). No significant difference between the males and the females was found in ethnicity, seasonal distribution, regional distribution, urban-rural distribution, causes of injury, number of vertebral fractures, or prevalence of comorbidities (except hypertension) ( P>0.05). Among the 744 OVCF patients, a total of 1 309 vertebrae were involved, with 628 thoracic vertebrae (48.0%) and 681 lumbar vertebrae (52.0%). The most common fracture segments were L 1 (22.5%), T 12 (21.2%), followed by L 2 (12.2%) and T 11 (10.2%). No significant gender difference was observed in the distribution of fracture segments ( P>0.05). Multiple linear regression analysis indicated that older age, female, and lower BMI were independent risk factors for vertebral osteoporosis ( P<0.05).
CONCLUSION
The age of onset of OVCF patients is increasing year by year. The number of fractured vertebral bodies, age distribution of morbidity, occupational distribution, BMI, history of vertebral fracture, hypertension, and blood lipid levels are related to gender. The occurrence of OVCF is mainly in the thoracolumbar segment. The female, older age, and lower BMI are independent risk factors of osteoporosis.
Humans
;
Male
;
Female
;
Aged
;
Middle Aged
;
Retrospective Studies
;
Spinal Fractures/etiology*
;
Aged, 80 and over
;
Osteoporotic Fractures/etiology*
;
Fractures, Compression/etiology*
;
Risk Factors
;
Bone Density
;
China/epidemiology*
;
Osteoporosis/epidemiology*
;
Comorbidity
;
Inpatients
;
Sex Factors
;
Age Factors
6.Predictive value of preoperative inflammatory response indicators for incisional infection after spinal surgery.
Wei LIANG ; Rui-Li ZHUO ; Shao-Dong SUN
China Journal of Orthopaedics and Traumatology 2025;38(2):183-187
OBJECTIVE:
To explore the clinical significance of preoperative neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), and C-reactive protein (CRP) to albumin (ALB) ratio in spinal surgery patients with postoperative incision infection.
METHODS:
A total of 373 patients who underwent spinal surgery were collected and devided into two groups according to the postoperative incision infection situation. Among them, 65 cases in the incision infection group included 34 males and 31 females with a mean age of (56.01±9.78) years old;308 cases in the non incision infection group included 157 males and 151 females with a mean age of (55.54±10.19) years old. Blood cell analyzer was applied to detect neutrophils, lymphocytes, and platelets, and calculate NLR and PLR;immunoturbidimetry was applied to measure serum CRP and ALB levels and calculate CRP/ALB ratio;receiver operating characteristic (ROC) curve was applied to analyze the predictive value of preoperative NLR, PLR, and CRP/ALB ratio for postoperative spinal incision infection;Logistic multivariate regression was applied to analyze the influencing factors of incision infection after spinal surgery.
RESULTS:
The NLR(4.92±1.13), PLR (119.32±22.74), CRP/ALB ratio (10.19±2.51), operation time (3.02±0.64) h, history of diabetes 38.46%(25/65), and the proportion of patients with implant 32.31%(21/65) in the incision infection group were higher than those in the non incision infection group 3.72±0.81, 90.58±20.16, 7.23±2.21, (2.26±0.51) h, 16.88%(53/308), 11.69%(36/308), there were statistical differences(P<0.05). The AUC of preoperative NLR, PLR, and CRP/ALB ratio alone and in combination for predicting postoperative incision infection after spinal surgery was 0.786, 0.806, 0.839, and 0.926, respectively. Preoperative NLR, PLR, and CRP/ALB ratio were independent risk factors for postoperative incision infection in spinal surgery(P<0.05).
CONCLUSION
The determination of preoperative NLR, PLR, and CRP/ALB ratio is beneficial for early prediction of postoperative spinal incision infection, and the combined detection of the three can further improve the accuracy of the prediction results.
Humans
;
Male
;
Female
;
Middle Aged
;
Aged
;
C-Reactive Protein/metabolism*
;
Surgical Wound Infection/etiology*
;
Adult
;
Spine/surgery*
;
Inflammation
;
Preoperative Period
7.Effect of Temperature Cycle Preservation on Platelet Aggregation Rate and Routine Parameters.
Ju-Ling LIANG ; Zhi-Hao DENG ; Chuang-Jin ZHUO ; Lu HUANG ; Jing XU ; Wei-Jian WU
Journal of Experimental Hematology 2025;33(1):236-240
OBJECTIVE:
To compare and analyze the changes of aggregation rate and routine parameters of platelets stored in temperature cycle, cold storage at 4 ℃ and oscillating storage at 22 ℃, so as to provide more experimental data for platelet preservation methods.
METHODS:
Blood samples were collected at 5 time points on the 1st, 2nd, 3rd, 4th and 6th day after platelet cycling preservation at temperature, cold storage at 4 ℃, and oscillating storage at 22 ℃. Platelet maximum aggregation rate (MAR) and routine parameters including platelet count (PLT), mean platelet volume (MPV), platelet distribution width (PDW) and platelet-larger cell ratio (P-LCR) were detected.
RESULTS:
The platelet MAR of three groups showed a significant decrease trend with the preservation time, the fastest decrease was in the 22 ℃ group, the slowest was in the 4 ℃ group, and the temperature cycle group was between the two groups. On the 3rd day of preservation, the platelet MAR in 4 ℃ group was still in the normal range (MAR>60%), while in temperature cycle group was about 50%, and in 22 ℃ group was the lowest. On the 4th day of preservation, platelet MAR in all the three groups was lower than 50%, and that in temperature cycle group was significantly lower than in 4 ℃ group but higher than in 22 ℃ group (both P < 0.05). On the 6th day of preservation, platelet MAR in the temperature cycle group was significantly lower than that in the 4 ℃ group ( P <0.05), but there was no statistically significant difference compared to 22 ℃ group (P >0.05). PLT values in the three groups were all significantly decreased with the preservation time extension, and were significantly lower than those in the early stage of preservation within 6 days (all P < 0.05). PDW in temperature cycle group had no significant change within 6 days of preservation, but MPV and P-LCR were significantly increased. MPV, PDW and P-LCR all decreased significantly in 4 ℃ group within 6 days of preservation but increased in 22 ℃ group. Under the same storage days, PLT value of temperature cycle group had no significant difference with that of 4 ℃ group and 22 ℃ group, while MPV, PDW and P-LCR values were significantly higher than 4 ℃ group but lower than 22 ℃ group (all P < 0.05).
CONCLUSION
The aggregation function and routine parameters changes of temperature circulating preserved platelets are between 4 and 22 ℃.
Humans
;
Platelet Aggregation
;
Blood Preservation/methods*
;
Temperature
;
Blood Platelets
;
Platelet Count
;
Mean Platelet Volume
;
Cryopreservation/methods*
;
Cold Temperature
8.A Case Report of Lung Adenocarcinoma with EGFR G719A Mutation and LMNA-NTRK1 Fusion.
Shiqi SONG ; Yaxian YANG ; Weiquan LUO ; Yueya LIANG ; Qi LI ; Tongxu ZHUO ; Weibin XIONG ; Jian HUANG
Chinese Journal of Lung Cancer 2025;28(1):75-80
Fusion variations of neurotrophic receptor tyrosine kinase (NTRK) are oncogenic drivers in various solid tumors such as breast cancer, salivary gland carcinoma, infant fibrosarcoma, etc. Gene rearrangements involving NTRK1/2/3 lead to constitutive activation of the tropomyosin receptor kinase (TRK) domain, and the expressed fusion proteins drive tumor growth and survival. NTRK fusions are estimated to occur at a frequency of approximately 0.1% to 1% in non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) mutations are prevalent in NSCLC, but the frequency of EGFR G719A mutation is relatively low (about 2%), and EGFR mutations are typically mutually exclusive with NTRK fusion variants. The study presented the first documented case of lung adenocarcinoma harboring both EGFR G719A mutation and LMNA-NTRK1 fusion. A review of the literature was conducted to elucidate the role of NTRK fusion mutations in NSCLC and their relationship with EGFR mutations, aiming to enhance the understanding of NTRK fusion mutations in NSCLC.
.
Humans
;
Adenocarcinoma/genetics*
;
Adenocarcinoma of Lung
;
ErbB Receptors/genetics*
;
Lamin Type A/genetics*
;
Lung Neoplasms/genetics*
;
Mutation
;
Oncogene Proteins, Fusion/genetics*
;
Receptor, trkA/metabolism*
9.GRK2 activates TRAF2-NF-κB signalling to promote hyperproliferation of fibroblast-like synoviocytes in rheumatoid arthritis.
Chenchen HAN ; Liping JIANG ; Weikang WANG ; Shujun ZUO ; Jintao GU ; Luying CHEN ; Zhuo CHEN ; Jiajie KUAI ; Xuezhi YANG ; Liang XU ; Yang MA ; Wei WEI
Acta Pharmaceutica Sinica B 2025;15(4):1956-1973
G protein-coupled receptor kinase 2 (GRK2) participates in the phosphorylation and desensitization of G protein-coupled receptor (GPCR), impacting various biological processes such as inflammation and cell proliferation. Dysregulated expression and activity of GRK2 have been reported in multiple cells in rheumatoid arthritis (RA). However, whether and how GRK2 regulates synovial hyperplasia and fibroblast-like synoviocytes (FLSs) proliferation is poorly understood. In this study, we investigated the regulation of GRK2 and its biological function in RA. We found that GRK2 transmembrane activity was increased in FLSs of RA patients and collagen-induced arthritis (CIA) rats. Additionally, we noted a positive correlation between high GRK2 expression on the cell membrane and serological markers associated with RA and CIA. Immunoprecipitation-mass spectrometry and pull-down analyses revealed tumor necrosis factor receptor-associated factor 2 (TRAF2) as a novel substrate of GRK2. Furthermore, surface plasmon resonance (SPR) and molecular docking assays determined that the C-terminus of GRK2 binds to the C-terminus of TRAF2 at the Gln340 residue. GRK2 knockdown and the GRK2 inhibitor CP-25 attenuated synovial hyperplasia and FLS proliferation in CIA both in vitro and in vivo by decreasing GRK2 membrane expression and activity. Mechanistically, increased GRK2 transmembrane activity contributed to the recruitment of TRAF2 on the cell membrane, promoting GRK2-TRAF2 interactions that facilitate the recruitment of the E3 ubiquitin ligase TRIM47 to TRAF2. This enhanced TRAF2 Lys63 polyubiquitylation and induced nuclear factor (NF)-κB activation, leading to synovial hyperplasia and abnormal proliferation of FLSs. Our study provides a mechanistic and preclinical rationale for further evaluation of GRK2 as a therapeutic target for RA.
10.Palmitoylated SARM1 targeting P4HA1 promotes collagen deposition and myocardial fibrosis: A new target for anti-myocardial fibrosis.
Xuewen YANG ; Yanwei ZHANG ; Xiaoping LENG ; Yanying WANG ; Manyu GONG ; Dongping LIU ; Haodong LI ; Zhiyuan DU ; Zhuo WANG ; Lina XUAN ; Ting ZHANG ; Han SUN ; Xiyang ZHANG ; Jie LIU ; Tong LIU ; Tiantian GONG ; Zhengyang LI ; Shengqi LIANG ; Lihua SUN ; Lei JIAO ; Baofeng YANG ; Ying ZHANG
Acta Pharmaceutica Sinica B 2025;15(9):4789-4806
Myocardial fibrosis is a serious cause of heart failure and even sudden cardiac death. However, the mechanisms underlying myocardial ischemia-induced cardiac fibrosis remain unclear. Here, we identified that the expression of sterile alpha and TIR motif containing 1 (SARM1), was increased significantly in the ischemic cardiomyopathy patients, dilated cardiomyopathy patients (GSE116250) and fibrotic heart tissues of mice. Additionally, inhibition or knockdown of SARM1 can improve myocardial fibrosis and cardiac function of myocardial infarction (MI) mice. Moreover, SARM1 fibroblasts-specific knock-in mice had increased deposition of extracellular matrix and impaired cardiac function. Mechanically, elevated expression of SARM1 promotes the deposition of extracellular matrix by directly modulating P4HA1. Notably, by using the Click-iT reaction, we identified that the increased expression of ZDHHC17 promotes the palmitoylation levels of SARM1, thereby accelerating the fibrosis process. Based on the fibrosis-promoting effect of SARM1, we screened several drugs with anti-myocardial fibrosis activity. In conclusion, we have unveiled that palmitoylated SARM1 targeting P4HA1 promotes collagen deposition and myocardial fibrosis. Inhibition of SARM1 is a potential strategy for the treatment of myocardial fibrosis. The sites where SARM1 interacts with P4HA1 and the palmitoylation modification sites of SARM1 may be the active targets for anti-fibrosis drugs.

Result Analysis
Print
Save
E-mail