1.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
2.Chinese expert consensus on integrated case management by a multidisciplinary team in CAR-T cell therapy for lymphoma.
Sanfang TU ; Ping LI ; Heng MEI ; Yang LIU ; Yongxian HU ; Peng LIU ; Dehui ZOU ; Ting NIU ; Kailin XU ; Li WANG ; Jianmin YANG ; Mingfeng ZHAO ; Xiaojun HUANG ; Jianxiang WANG ; Yu HU ; Weili ZHAO ; Depei WU ; Jun MA ; Wenbin QIAN ; Weidong HAN ; Yuhua LI ; Aibin LIANG
Chinese Medical Journal 2025;138(16):1894-1896
3.Inhibition of CCT5-mediated asparagine biosynthesis and anti-PD-L1 produce synergistic antitumor effects in colorectal cancer.
Yujie ZHANG ; Weiyi ZHAO ; Ling WU ; Tianjing AI ; Jie HE ; Zetao CHEN ; Chuangyuan WANG ; Hui WANG ; Rui ZHOU ; Chaoqun LIU ; Liang ZHAO
Acta Pharmaceutica Sinica B 2025;15(5):2480-2497
Abnormal amino acid metabolism promotes tumor progression by inducing malignant behaviors in tumor cells and altering the immune landscape within the tumor microenvironment. However, the underlying mechanisms remain unclear. In this study, we constructed colorectal cancer (CRC) organoids and patient-derived tumor xenograft (PDX) models, performing multifaceted validation to confirm that T-complex protein 1 subunit epsilon (CCT5), mediates the biosynthesis of aspartate and enhances sensitivity to anti-PD-L1 immunotherapy. Mechanistically, CCT5 directly binds to asparagine synthetase (ASNS) and promotes the synthesis of aspartate (Asn). The Asn-mTORC1 axis facilitates tumor cell proliferation while upregulating PD-L1 expression, which leads to a reduction in the number of effector CD8+ T cells. Treatment with l-asparaginase (ASNase) combined with anti-PD-L1 therapy effectively reverses the growth of CRC characterized by high CCT5 expression. In summary, we identify CCT5 as a potential biomarker to guide the combined use of ASNase and anti-PD-L1 antibodies in CRC treatment.
4.Inhibition of Tumoral VISTA to Overcome TKI Resistance via Downregulation of the AKT/mTOR and JAK2/STAT5 Pathways in Chronic Myeloid Leukemia
Kexin AI ; Mu CHEN ; Zhao LIANG ; Xiangyang DING ; Yang GAO ; Honghao ZHANG ; Suwan WU ; Yanjie HE ; Yuhua LI
Biomolecules & Therapeutics 2024;32(5):582-600
Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment landscape for chronic myeloid leukemia (CML). However, TKI resistance poses a significant challenge, leading to treatment failure and disease progression. Resistance mechanisms include both BCR::ABL1-dependent and BCR::ABL1-independent pathways. The mechanisms underlying BCR::ABL1 independence remain incompletely understood, with CML cells potentially activating alternative signaling pathways, including the AKT/mTOR and JAK2/STAT5 pathways, to compensate for the loss of BCR::ABL1 kinase activity. This study explored tumoral VISTA (encoded by VSIR) as a contributing factor to TKI resistance in CML patients and identified elevated tumoral VISTA levels as a marker of resistance and poor survival. Through in vitro and in vivo analyses, we demonstrated that VSIR knockdown and the application of NSC-622608, a novel VISTA inhibitor, significantly impeded CML cell proliferation and induced apoptosis by attenuating the AKT/ mTOR and JAK2/STAT5 pathways, which are crucial for CML cell survival independent of BCR::ABL1 kinase activity. Moreover, VSIR overexpression promoted TKI resistance in CML cells. Importantly, the synergistic effect of NSC-622608 with TKIs offers a potent therapeutic avenue against both imatinib-sensitive and imatinib-resistant CML cells, including those harboring the challenging T315I mutation. Our findings highlight the role of tumoral VISTA in mediating TKI resistance in CML, suggesting that inhibition of VISTA, particularly in combination with TKIs, is an innovative approach to enhancing treatment outcomes in CML patients, irrespective of BCR::ABL1 mutation status. This study not only identified a new pathway contributing to TKI resistance but also revealed the possibility of targeting tumoral VISTA as a means of overcoming this significant clinical challenge.
5.Recommendations for the timing, dosage, and usage of corticosteroids during cytokine release syndrome (CRS) caused by chimeric antigen receptor (CAR)-T cell therapy for hematologic malignancies.
Sanfang TU ; Xiu LUO ; Heng MEI ; Yongxian HU ; Yang LIU ; Ping LI ; Dehui ZOU ; Ting NIU ; Kailin XU ; Xi ZHANG ; Lugui QIU ; Lei GAO ; Guangxun GAO ; Li ZHANG ; Yimei FENG ; Ying WANG ; Mingfeng ZHAO ; Jianqing MI ; Ming HOU ; Jianmin YANG ; He HUANG ; Jianxiang WANG ; Yu HU ; Weili ZHAO ; Depei WU ; Jun MA ; Yuhua LI ; Wenbin QIAN ; Xiaojun HUANG ; Weidong HAN ; Aibin LIANG
Chinese Medical Journal 2024;137(22):2681-2683
6.Effect of acupuncture exercise therapy synchronizing isokinetic muscle strength training for postoperative rehabilitation of meniscectomy under arthroscopy.
Shu-Yi CUI ; Jun-Hui WANG ; Jia-Xin ZHAO ; Jia-Yan LIANG ; Guang-Tian LIU ; Wen YAN
Chinese Acupuncture & Moxibustion 2023;43(10):1118-1122
OBJECTIVE:
To observe the effect of acupuncture exercise therapy synchronizing isokinetic muscle strength training on the motor function, stability and proprioception of knee joint, as well as the anxiety emotion in patients after meniscectomy under arthroscopy.
METHODS:
A total of 70 patients after meniscectomy under arthroscopy were randomized into an observation group (35 cases, 2 cases were eliminated, 2 cases dropped off) and a control group (35 cases, 2 cases were eliminated, 1 case dropped off). Acupuncture was applied at Chize (LU 5), Neixiyan (EX-LE 4), Dubi (ST 35),Yanglingquan (GB 34), etc. on the affective side in the two groups. After 30 min, the needles of the knee joint area were withdrew, while the needle at elbow was continuously retained, the observation group was given acupuncture exercise therapy synchronizing isokinetic muscle strength training, and the control group was given conventional acupuncture exercise therapy. The treatment was given once a day, 7-day treatment was taken as one course, and totally 4 courses were required in the two groups. Before and after treatment, the knee joint Lysholm score, the knee joint isokinetic muscle strength flexion/extension ratio (H/Q), joint position sense measurement (JPS) and Hamilton anxiety scale (HAMA) score were compared in the two groups.
RESULTS:
After treatment, the knee joint Lysholm scores and H/Q were increased compared with those before treatment in the two groups (P<0.001), and the knee joint Lysholm score and H/Q in the observation group were higher than those in the control group (P<0.001); the JPS and HAMA scores were decreased compared with those before treatment in the two groups (P<0.001), the JPS and HAMA score in the observation group were lower than those in the control group (P<0.05).
CONCLUSION
Acupuncture exercise therapy synchronizing isokinetic muscle strength training can effectively improve the motor function, stability and proprioception of knee joint, as well as the anxiety emotion in patients after meniscectomy under arthroscopy.
Humans
;
Arthroscopy
;
Meniscectomy
;
Resistance Training
;
Treatment Outcome
;
Osteoarthritis, Knee/therapy*
;
Acupuncture Therapy
;
Exercise Therapy
;
Muscles
;
Muscle Strength
;
Acupuncture Points
7.Traditional Chinese Medicine Diagnosis and Treatment of Neuropathic Pain from Theory of Chronic Pain Entering Collaterals
Xi ZHAO ; Guoshan SHI ; Shuwen YANG ; Yongsheng GUO ; Peizheng LIN ; Chen WANG ; Peng CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(13):197-202
Neuropathic pain is a clinical symptom with complex mechanisms and high incidence. The commonly used analgesics have limited efficacy and can cause serious side effects. The theory of chronic pain entering collaterals was proposed by YE Tianshi, a famous physician focusing on warm diseases in the Qing dynasty, on the basis of the ancient therapies for pain. This theory is particularly suitable for the diagnosis and treatment of neuropathic pain in view of the clinical course and manifestations. The chronic neuropathic pain can enter the Yin collateral in deeper sites. The pathogenesis of neuropathic pain is summarized as a deficiency in origin and excess in superficiality. The root cause is the dysfunction of Zang-Fu organs, mainly the liver, kidney and heart, while the superficial causes are phlegm and stasis caused by the obstructed Qi and blood movement due to the consumption of Qi and blood in collaterals. Accordingly, the therapies such as dispelling blood stasis, resolving phlegm, and dredging collaterals should be adopted. This paper expounds the traditional Chinese medicine (TCM) pathogenesis and treatment of neuropathic pain, enriching the knowledge and providing new ideas for the TCM prevention and treatment of this disease as a collateral disease.
8.AP2α negatively regulates PDHA1 in cervical cancer cells to promote aggressive features and aerobic glycolysis in vitro and in vivo
Lijie ZHAO ; Rong GENG ; Yi HUANG ; Jiping ZHANG ; Haiying CHENG ; Cankun ZHOU ; Yifeng WANG
Journal of Gynecologic Oncology 2023;34(5):e59-
Objective:
As a gate-keeper enzyme link, pyruvate dehydrogenase E1 subunit alpha (PDHA1) functions as a key regulator during glycolysis and the mitochondrial citric acid cycle, which has been reported in several tumors. Nevertheless, the effects of PDHA1 on biological behaviors and metabolism remain unclear in cervical cancer (CC) cells. The study aims to explore the PDHA1 effects on glucose metabolism in CC cells and its possible mechanism.
Methods:
We first determined the expression levels of PDHA1 and activating protein 2 alpha (AP2α) as a PDHA1 potential transcription factor. The effects of PDHA1 in vivo were evaluated through a subcutaneous xenograft mouse model. Cell Counting Kit-8 assay, 5-ethynyl-2′-deoxyuridine (EdU) labeling assay, Transwell invasion assay, wound healing assay, Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and flow cytometry were performed in CC cells. Oxygen consumption rate (OCR) levels were determined to reflect aerobic glycolysis level in gastric cancer cells. Reactive oxygen species (ROS) level was measured with 2′, 7′-dichlorofluorescein diacetate kit. The relationship between PDHA1 and AP2α was examined by conducting chromatin immunoprecipitation assay and electrophoretic mobility shift assay.
Results:
In CC tissues and cell lines, PDHA1 was downregulated, while AP2α was upregulated. Overexpression of PDHA1 remarkedly inhibited the proliferation, invasion and migration of CC cells, and tumor growth in vivo, as well as promoted OCR, apoptosis and ROS production. Moreover, AP2α directly bound to PDHA1 within suppressor of cytokine signaling 3 promoter region to negatively regulate PDHA1 expression level. What is more, PDHA1 knockdown could effectively reversed the AP2α silencing-mediated suppressive effects on cell proliferation, invasion, migration, and the promotive effects of AP2α knockdown on OCR, apoptosis and ROS production.
Conclusions
Our findings demonstrate that AP2α negatively regulated PDHA1 via binding to PDHA1 gene promoter to promote malignant CC cell behaviors, which may provide a potential approach for CC therapeutics.
9.Therapeutic mechanism of Shenbing Decoction Ⅲ for renal fibrosis in chronic kidney disease: a study with network pharmacology, molecular docking and validation in rats.
Guanfeng LUO ; Huaxi LIU ; Bei XIE ; Yijian DENG ; Penghui XIE ; Xiaoshan ZHAO ; Xiaomin SUN
Journal of Southern Medical University 2023;43(6):924-934
OBJECTIVE:
To observe the effect of Shenbing Decoction Ⅲ for improving renal function and pathology in rats with 5/6 nephrectomy and analyze its therapeutic mechanism for renal fibrosis in chronic kidney disease using network pharmacology combined with molecular docking.
METHODS:
Forty male SD rats were randomized into two groups to receive two-staged 5/6 nephrectomy (n=30) or sham operation (n=10), and 2 weeks after the final operation, serum creatinine level of the rats was measured. The rats with nephrectomy were further randomized into Shenbing Decoction Ⅲ group, losartan group and model group for daily treatment with the corresponding drugs via gavage starting at 1 week after 5/6 nephrectomy. After 16 weeks of treatment, serum creatinine and urea nitrogen levels of the rats were measured, and HE staining and Western blotting were used to examine the changes in renal pathology and fibrosis-related factors. Network pharmacology combined with molecular docking study was performed to explore the therapeutic mechanism Shenbing Decoction Ⅲ against renal fibrosis in chronic kidney disease, and Western blotting was used to verify the expressions of the core targets.
RESULTS:
Compared with those in the model group, the rats receiving 5/6 nephrectomy and Shenbing Decoction Ⅲ treatment showed significantly reduced serum creatinine and urea nitrogen levels, lessened renal pathologies, and improvement of the changes in epithelial mesenchymal transition-related proteins. Network pharmacological analysis showed that the main active ingredients of Shenbing Decoction Ⅲ were acacetin, apigenin, eupatilin, quercetin, kaempferol and luteolin, and the key targets included STAT3, SRC, CTNNB1, PIK3R1 and AKT1. Molecular docking study revealed that the active ingredients of Shenbing Decoction Ⅲ had good binding activity to the key targets. Western blotting showed that in rats with 5/6 nephrectomy, treatment with Shenbing Decoction Ⅲ obviously restored the protein expression of STAT3, PI3K, and AKT in renal tissue.
CONCLUSION
Shenbing Decoction Ⅲ can reduce renal injury induced by 5/6 nephrectomy in rats, and its therapeutic effects are mediated possibly by its main pharmacologically active ingredients that alleviate renal fibrosis via modulating multiple targets including STAT3, PIK3R1, and AKT1.
Male
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Molecular Docking Simulation
;
Network Pharmacology
;
Creatinine
;
Renal Insufficiency, Chronic/drug therapy*
;
Fibrosis
;
Urea
10.Total Ginsenoside Extract from Panax ginseng Enhances Neural Stem Cell Proliferation and Neuronal Differentiation by Inactivating GSK-3β.
Kai-Li LIN ; Ji ZHANG ; Hau-Lam CHUNG ; Xin-Yi WU ; Bin LIU ; Bo-Xin ZHAO ; Stephen Cho-Wing SZE ; Ping-Zheng ZHOU ; Ken Kin-Lam YUNG ; Shi-Qing ZHANG
Chinese journal of integrative medicine 2022;28(3):229-235
OBJECTIVE:
To study the effects of total ginsenosides (TG) extract from Panax ginseng on neural stem cell (NSC) proliferation and differentiation and their underlying mechanisms.
METHODS:
The migration of NSCs after treatment with various concentrations of TG extract (50, 100, or 200 µ g/mL) were monitored. The proliferation of NSCs was examined by a combination of cell counting kit-8 and neurosphere assays. NSC differentiation mediated by TG extract was evaluated by Western blotting and immunofluorescence staining to monitor the expression of nestin and microtubule associated protein 2 (MAP2). The GSK-3β/β-catenin pathway in TG-treated NSCs was examined by Western blot assay. The NSCs with constitutively active GSK-3β mutant were made by adenovirus-mediated gene transfection, then the proliferation and differentiation of NSCs mediated by TG were further verified.
RESULTS:
TG treatment significantly enhanced NSC migration (P<0.01 or P<0.05) and increased the proliferation of NSCs (P<0.01 or P<0.05). TG mediation also significantly upregulated MAP2 expression but downregulated nestin expression (P<0.01 or P<0.05). TG extract also significantly induced GSK-3β phosphorylation at Ser9, leading to GSK-3β inactivation and, consequently, the activation of the GSK-3β/β-catenin pathway (P<0.01 or P<0.05). In addition, constitutive activation of GSK-3β in NSCs by the transfection of GSK-3β S9A mutant was found to significantly suppress TG-mediated NSC proliferation and differentiation (P<0.01 or P<0.05).
CONCLUSION
TG promoted NSC proliferation and neuronal differentiation by inactivating GSK-3β.
Animals
;
Cell Differentiation
;
Cell Proliferation
;
Ginsenosides/pharmacology*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Neural Stem Cells/metabolism*
;
Panax
;
Plant Extracts/pharmacology*
;
Rats
;
beta Catenin/metabolism*

Result Analysis
Print
Save
E-mail