1.Epidemiological characteristics and trends of non-suicidal self-injury among middle school students in Jiading District of Shanghai from 2015 to 2023
Chinese Journal of School Health 2025;46(9):1282-1286
Objective:
To analyze the epidemiological characteristics and changing trends of non suicidal self injury (NSSI) behaviors among middle school students in Jiading District of Shanghai, from 2015 to 2023, so as to provide a basis for the development of NSSI prevention and control measures among students.
Methods:
Using a stratified cluster random sampling method, a total of five times for Shanghai Adolescent Health Risk Behavior Surveys were conducted for every two years in Jiading District of Shanghai from 2015 to 2023. A total of 5 231 middle school students from junior high schools and senior high schools were selected for questionnaire surveys. Intergroup comparisons were performed using the x 2 test or the χ 2 trend test, and the JointPoint 5.0 software was used to analyze the changing trends, with the annual percent change (APC) used for evaluation. A binary Logistic regression model was employed to analyze the related factors of NSSI behavior among middle school students.
Results:
In 2023, the reported NSSI rate among middle school students in Jiading District was 14.2%. The rate was significantly higher among junior high school students (17.1%) than that among senior high school students (11.1%), and higher among females (19.2%) than that among males (10.0%) ( χ 2=10.04, 23.21, both P <0.01). From 2015 to 2023, the overall reported NSSI rate showed an increasing trend, rising from 8.6% in 2015 to 14.2% in 2023 ( χ 2 trend =22.25), with an APC of 6.64% ( t =3.49), and the APC for girls was 9.79 % ( t =3.20) (all P <0.05). Among students reporting NSSI, the proportion experiencing ≥6 episodes increased from 10.8% in 2015 to 19.2% in 2023 ( χ 2 trend =6.57, P <0.05). Multivariate Logistic regression analysis indicated that girls, junior high school students, those with insomnia, depressive emotion and drinkers had higher risks of NSSI, compared to boys, senior high school students, those without insomnia, non depressive emotion students and non drinkers ( OR =1.71, 1.96, 3.44, 4.76, 1.77, all P < 0.05 ).
Conclusions
The reported rate of NSSI among middle school students in Jiading District of Shanghai, increased annually from 2015 to 2023, and the proportion of repeated NSSI also showed an upward trend. Early intervention measures targeting middle school students, especially junior high school students and females, should be implemented to prevent and control its occurrence and development.
2.Diagnostic Techniques and Risk Prediction for Cardiovascular-kidney-metabolic (CKM) Syndrome
Song HOU ; Lin-Shan ZHANG ; Xiu-Qin HONG ; Chi ZHANG ; Ying LIU ; Cai-Li ZHANG ; Yan ZHU ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(10):2585-2601
Cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic disorders are the 3 major chronic diseases threatening human health, which are closely related and often coexist, significantly increasing the difficulty of disease management. In response, the American Heart Association (AHA) proposed a novel disease concept of “cardiovascular-kidney-metabolic (CKM) syndrome” in October 2023, which has triggered widespread concern about the co-treatment of heart and kidney diseases and the prevention and treatment of metabolic disorders around the world. This review posits that effectively managing CKM syndrome requires a new and multidimensional paradigm for diagnosis and risk prediction that integrates biological insights, advanced technology and social determinants of health (SDoH). We argue that the core pathological driver is a “metabolic toxic environment”, fueled by adipose tissue dysfunction and characterized by a vicious cycle of systemic inflammation and oxidative stress, which forms a common pathway to multi-organ injury. The at-risk population is defined not only by biological characteristics but also significantly impacted by adverse SDoH, which can elevate the risk of advanced CKM by a factor of 1.18 to 3.50, underscoring the critical need for equity in screening and care strategies. This review systematically charts the progression of diagnostic technologies. In diagnostics, we highlight a crucial shift from single-marker assessments to comprehensive multi-marker panels. The synergistic application of traditional biomarkers like NT-proBNP (reflecting cardiac stress) and UACR (indicating kidney damage) with emerging indicators such as systemic immune-inflammation index (SII) and Klotho protein facilitates a holistic evaluation of multi-organ health. Furthermore, this paper explores the pivotal role of non-invasive monitoring technologies in detecting subclinical disease. Techniques like multi-wavelength photoplethysmography (PPG) and impedance cardiography (ICG) provide a real-time window into microcirculatory and hemodynamic status, enabling the identification of early, often asymptomatic, functional abnormalities that precede overt organ failure. In imaging, progress is marked by a move towards precise, quantitative evaluation, exemplified by artificial intelligence-powered quantitative computed tomography (AI-QCT). By integrating AI-QCT with clinical risk factors, the predictive accuracy for cardiovascular events within 6 months significantly improves, with the area under the curve (AUC) increasing from 0.637 to 0.688, demonstrating its potential for reclassifying risk in CKM stage 3. In the domain of risk prediction, we trace the evolution from traditional statistical tools to next-generation models. The new PREVENT equation represents a major advancement by incorporating key kidney function markers (eGFR, UACR), which can enhance the detection rate of CKD in primary care by 20%-30%. However, we contend that the future lies in dynamic, machine learning-based models. Algorithms such as XGBoost have achieved an AUC of 0.82 for predicting 365-day cardiovascular events, while deep learning models like KFDeep have demonstrated exceptional performance in predicting kidney failure risk with an AUC of 0.946. Unlike static calculators, these AI-driven tools can process complex, multimodal data and continuously update risk profiles, paving the way for truly personalized and proactive medicine. In conclusion, this review advocates for a paradigm shift toward a holistic and technologically advanced framework for CKM management. Future efforts must focus on the deep integration of multimodal data, the development of novel AI-driven biomarkers, the implementation of refined SDoH-informed interventions, and the promotion of interdisciplinary collaboration to construct an efficient, equitable, and effective system for CKM screening and intervention.
3.Burden and risk factors of stroke worldwide and in China: An analysis from the Global Burden of Disease Study 2021.
Zhengbao ZHU ; Mengyao SHI ; Quan YU ; Jiawen FEI ; Beiping SONG ; Xiaoli QIN ; Lulu SUN ; Yonghong ZHANG
Chinese Medical Journal 2025;138(20):2588-2595
BACKGROUND:
Stroke is the leading cause of death and long-term disability worldwide, including China. This study aimed to provide timely updates on stroke burden and stroke-related risk factors to help improve population-based prevention and control strategies.
METHODS:
Based on the Global Burden of Disease study 2021, incidence rate, prevalence rate, mortality rate, and disability-adjusted life-year (DALY) rate were used to estimate stroke burden trend from 1990 to 2021.
RESULTS:
In 2021, China had 4.1 million incident stroke cases, 26.3 million prevalent stroke cases, 2.6 million stroke related deaths, and 53.2 million stroke related DALYs, compared to 11.9 million incident stroke cases, 93.8 million prevalent stroke cases, 7.3 million stroke related deaths, and 160.5 million stroke-related DALYs worldwide. In 2021, the top six risk factors contributing to stroke burden were high blood pressure, air pollution, tobacco consumption, dietary risk factors, high low-density lipoprotein cholesterol, and high fasting plasma glucose, both in China and worldwide. From 1990 to 2021, China had significant increases of incidence rate, prevalence rate, mortality rate, and DALY rate for stroke, with estimates of 100.6 (95% uncertainty intervals [UI]: 87.2, 114.1)%, 102.9 (95% UI: 95.5, 110.9)%, 40.0 (95% UI: 14.9, 72.3)% and 15.7 (95% UI: -4.6, 41.2)%, respectively, while global incidence rate, prevalence rate, mortality rate and DALY rate for total stroke showed relatively moderate increases or even decreases, with estimates of 15.0 (95% UI: 12.1,18.0)%, 25.8 (95% UI: 23.7, 28.0)%, -2.6 (95% UI: -10.6, 5.5)%, and -10.7 (95% UI: -17.7, -3.6)%, respectively.
CONCLUSION
Stroke remains a huge disease burden worldwide and in China, and compared to the worldwide China has a significantly higher burden of stroke.
Humans
;
Stroke/etiology*
;
China/epidemiology*
;
Risk Factors
;
Global Burden of Disease
;
Disability-Adjusted Life Years
;
Prevalence
;
Incidence
;
Female
;
Quality-Adjusted Life Years
;
Male
4.The regulation and mechanism of apolipoprotein A5 on myocardial lipid deposition.
Xiao-Jie YANG ; Jiang LI ; Jing-Yuan CHEN ; Teng-Teng ZHU ; Yu-Si CHEN ; Hai-Hua QIU ; Wen-Jie CHEN ; Xiao-Qin LUO ; Jun LUO
Acta Physiologica Sinica 2025;77(1):35-46
The current study aimed to clarify the roles of apolipoprotein A5 (ApoA5) and milk fat globule-epidermal growth factor 8 (Mfge8) in regulating myocardial lipid deposition and the regulatory relationship between them. The serum levels of ApoA5 and Mfge8 in obese and healthy people were compared, and the obesity mouse model induced by the high-fat diet (HFD) was established. In addition, primary cardiomyocytes were purified and identified from the hearts of suckling mice. The 0.8 mmol/L sodium palmitate treatment was used to establish the lipid deposition cardiomyocyte model in vitro. ApoA5-overexpressing adenovirus was used to observe its effects on cardiac function and lipids. The expressions of the fatty acid uptake-related molecules and Mfge8 on transcription or translation levels were detected. Co-immunoprecipitation was used to verify the interaction between ApoA5 and Mfge8 proteins. Immunofluorescence was used to observe the co-localization of Mfge8 protein with ApoA5 or lysosome-associated membrane protein 2 (LAMP2). Recombinant rMfge8 was added to cardiomyocytes to investigate the regulatory mechanism of ApoA5 on Mfge8. The results showed that participants in the simple obesity group had a significant decrease in serum ApoA5 levels (P < 0.05) and a significant increase in Mfge8 levels (P < 0.05) in comparison with the healthy control group. The adenovirus treatment successfully overexpressed ApoA5 in HFD-fed obese mice and palmitic acid-induced lipid deposition cardiomyocytes, respectively. ApoA5 reduced the weight of HFD-fed obese mice (P < 0.05), shortened left ventricular isovolumic relaxation time (IVRT), increased left ventricular ejection fraction (LVEF), and significantly reduced plasma levels of triglycerides (TG) and cholesterol (CHOL) (P < 0.05). In myocardial tissue and cardiomyocytes, the overexpression of ApoA5 significantly reduced the deposition of TG (P < 0.05), transcription of fatty acid translocase (FAT/CD36) (P < 0.05), fatty acid-binding protein (FABP) (P < 0.05), and fatty acid transport protein (FATP) (P < 0.05), and protein expression of Mfge8 (P < 0.05), while the transcription levels of Mfge8 were not significantly altered (P > 0.05). In vitro, the Mfge8 protein was captured using ApoA5 as bait protein, indicating a direct interaction between them. Overexpression of ApoA5 led to an increase in co-localization of Mfge8 with ApoA5 or LAMP2 in cardiomyocytes under lipid deposition status. On this basis, exogenous added recombinant rMfge8 counteracted the improvement of lipid deposition in cardiomyocytes by ApoA5. The above results indicate that the overexpression of ApoA5 can reduce fatty acid uptake in myocardial cells under lipid deposition status by regulating the content and cellular localization of Mfge8 protein, thereby significantly reducing myocardial lipid deposition and improving cardiac diastolic and systolic function.
Animals
;
Humans
;
Mice
;
Myocytes, Cardiac/metabolism*
;
Obesity/physiopathology*
;
Male
;
Apolipoprotein A-V/blood*
;
Lipid Metabolism/physiology*
;
Milk Proteins/blood*
;
Myocardium/metabolism*
;
Diet, High-Fat
;
Antigens, Surface/physiology*
;
Mice, Inbred C57BL
;
Cells, Cultured
;
Female
5.Verification of resveratrol ameliorating vascular endothelial damage in sepsis-associated encephalopathy through HIF-1α pathway based on network pharmacology and experiment.
Rong LI ; Yue WU ; Wen-Xuan ZHU ; Meng QIN ; Si-Yu SUN ; Li-Ya WANG ; Mei-Hui TIAN ; Ying YU
China Journal of Chinese Materia Medica 2025;50(4):1087-1097
This study aims to investigate the mechanism by which resveratrol(RES) alleviates cerebral vascular endothelial damage in sepsis-associated encephalopathy(SAE) through network pharmacology and animal experiments. By using network pharmacology, the study identified common targets and genes associated with RES and SAE and constructed a protein-protein interaction( PPI) network. Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed to pinpoint key signaling pathways, followed by molecular docking validation. In the animal experiments, a cecum ligation and puncture(CLP) method was employed to induce SAE in mice. The mice were randomly assigned to the sham group, CLP group, and medium-dose and high-dose groups of RES. The sham group underwent open surgery without CLP, and the CLP group received an intraperitoneal injection of 0. 9% sodium chloride solution after surgery. The medium-dose and high-dose groups of RES were injected intraperitoneally with 40 mg·kg-1 and 60 mg·kg~(-1) of RES after modeling, respectively, and samples were collected 12 hours later. Neurological function scores were assessed, and the wet-dry weight ratio of brain tissue was detected. Serum superoxide dismutase(SOD), catalase( CAT) activity, and malondialdehyde( MDA) content were measured by oxidative stress kit. Histopathological changes in brain tissue were examined using hematoxylin-eosin(HE) staining. Transmission electron microscopy was employed to evaluate tight cell junctions and mitochondrial ultrastructure changes in cerebral vascular endothelium. Western blot analysis was performed to detect the expression of zonula occludens1( ZO-1), occludin, claudins-5, optic atrophy 1( OPA1), mitofusin 2(Mfn2), dynamin-related protein 1(Drp1), fission 1(Fis1), and hypoxia-inducible factor-1α(HIF-1α). Network pharmacology identified 76 intersecting targets for RES and SAE, with the top five core targets being EGFR, PTGS2, ESR1, HIF-1α, and APP. GO enrichment analysis showed that RES participated in the SAE mechanism through oxidative stress reaction. KEGG enrichment analysis indicated that RES participated in SAE therapy through HIF-1α, Rap1, and other signaling pathways. Molecular docking results showed favorable docking activity between RES and key targets such as HIF-1α. Animal experiment results demonstrated that compared to the sham group, the CLP group exhibited reduced nervous reflexes, decreased water content in brain tissue, as well as serum SOD and CAT activity, and increased MDA content. In addition, the CLP group exhibited disrupted tight junctions in cerebral vascular endothelium and abnormal mitochondrial morphology. The protein expression levels of Drp1, Fis1, and HIF-1α in brain tissue were increased, while those of ZO-1, occludin, claudin-5, Mfn2, and OPA1 were decreased. In contrast, the medium-dose and high-dose groups of RES showed improved neurological function, increased water content in brain tissue and SOD and CAT activity, and decreased MDA content. Cell morphology in brain tissue, tight junctions between endothelial cells, and mitochondrial structure were improved. The protein expressions of Drp1, Fis1, and HIF-1α were decreased, while those of ZO-1, occludin, claudin-5, Mfn2, and OPA1 were increased. This study suggested that RES could ameliorate cerebrovascular endothelial barrier function and maintain mitochondrial homeostasis by inhibiting oxidative stress after SAE damage, potentially through modulation of the HIF-1α signaling pathway.
Animals
;
Mice
;
Network Pharmacology
;
Resveratrol/administration & dosage*
;
Male
;
Sepsis-Associated Encephalopathy/genetics*
;
Signal Transduction/drug effects*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Endothelium, Vascular/metabolism*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Humans
;
Sepsis/complications*
;
Oxidative Stress/drug effects*
6.Effect of Chaihu Jia Longgu Muli Decoction on apoptosis in rats with heart failure after myocardial infarction through IκBα/NF-κB pathway.
Miao-Yu SONG ; Cui-Ling ZHU ; Yi-Zhuo LI ; Xing-Yuan LI ; Gang LIU ; Xiao-Hui LI ; Yan-Qin SUN ; Ming-Yuan DU ; Lei JIANG ; Chao-Chong YUE
China Journal of Chinese Materia Medica 2025;50(8):2184-2192
This study aims to explore the protective effect of Chaihu Jia Longgu Muli Decoction on rats with heart failure after myocardial infarction, and to clarify its possible mechanisms, providing a new basis for basic research on the mechanism of classic Chinese medicinal formula-mediated inflammatory response in preventing and treating heart failure induced by apoptosis after myocardial infarction. A heart failure model after myocardial infarction was established in rats by coronary artery ligation. The rats were divided into sham group, model group, and low, medium, and high-dose groups of Chaihu Jia Longgu Muli Decoction, with 10 rats in each group. The low-dose, medium-dose, and high-dose groups of Chaihu Jia Longgu Muli Decoction were given 6.3, 12.6, and 25.2 g·kg~(-1) doses by gavage, respectively. The sham group and model group were given an equal volume of distilled water by gavage once daily for four consecutive weeks. Cardiac function was assessed using color Doppler echocardiography. Myocardial pathology was detected by hematoxylin-eosin(HE) staining, apoptosis was measured by TUNEL assay, and mitophagy was observed by transmission electron microscopy. The levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-1β, and N-terminal pro-B-type natriuretic peptide(NT-proBNP) in serum were detected by enzyme-linked immunosorbent assay(ELISA). The expression of apoptosis-related proteins B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax), and cleaved caspase-3 was detected by Western blot. Additionally, the expression of phosphorylated nuclear transcription factor-κB(NF-κB) p65(p-NF-κB p65)(upstream) and nuclear factor kappa B inhibitor alpha(IκBα)(downstream) in the NF-κB signaling pathway was assessed by Western blot. The results showed that compared with the sham group, left ventricular ejection fraction(LVEF) and left ventricular short axis shortening(LVFS) in the model group were significantly reduced, while left ventricular end diastolic diameter(LVEDD) and left ventricular end systolic diameter(LVESD) increased significantly. Myocardial tissue damage was severe, with widened intercellular spaces and disorganized cell arrangement. The apoptosis rate was increased, and mitochondria were enlarged with increased vacuoles. Levels of TNF-α, IL-1β, and NT-proBNP were elevated, indicating an obvious inflammatory response. The expression of pro-apoptotic factors Bax and cleaved caspase-3 increased, while the anti-apoptotic factor Bcl-2 decreased. The expression of p-NF-κB p65 was upregulated, and the expression of IκBα was downregulated. In contrast, the Chaihu Jia Longgu Muli Decoction groups showed significantly improved of LVEF, LVFS and decreased LVEDD, LVESD compared to the model group. Myocardial tissue damage was alleviated, and intercellular spaces were reduced. The apoptosis rate decreased, mitochondrial volume decreased, and the levels of TNF-α, IL-1β, and NT-proBNP were lower. The expression of pro-apoptotic factors Bax and cleaved caspase-3 decreased, while the expression of the anti-apoptotic factor Bcl-2 increased. Additionally, the expression of p-NF-κB p65 decreased, while IκBα expression increased. In summary, this experimental study shows that Chaihu Jia Longgu Muli Decoction can reduce the inflammatory response and apoptosis rate in rats with heart failure after myocardial infarction, which may be related to the regulation of the IκBα/NF-κB signaling pathway.
Animals
;
Apoptosis/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Myocardial Infarction/physiopathology*
;
Male
;
NF-kappa B/genetics*
;
Heart Failure/etiology*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
NF-KappaB Inhibitor alpha/genetics*
;
Humans
;
Tumor Necrosis Factor-alpha/genetics*
7.Allogeneic hematopoietic stem cell transplantation for pediatric acute leukemia harboring the PICALM-MLLT10 fusion in two cases.
Yu CHEN ; Yong-Bing ZHU ; Jia-Si ZHANG ; Ai ZHANG ; Ya-Qin WANG ; Qun HU ; Ai-Guo LIU
Chinese Journal of Contemporary Pediatrics 2025;27(11):1414-1419
A retrospective analysis was conducted on the clinical course of two children with PICALM-MLLT10-positive acute leukemia treated at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, between July 2021 and July 2023. The patients were diagnosed with acute T-lymphoblastic leukemia with central nervous system involvement and high-risk acute myeloid leukemia, respectively. Both achieved bone marrow complete remission after conventional chemotherapy combined with venetoclax. Following conversion to molecular negativity, they underwent sequential allogeneic hematopoietic stem cell transplantation. At the latest follow-up, both patients were alive and in good clinical condition. These observations suggest that proceeding to hematopoietic stem cell transplantation after venetoclax-based chemotherapy may improve the long-term survival of children with PICALM-MLLT10-positive leukemia.
Humans
;
Hematopoietic Stem Cell Transplantation
;
Male
;
Female
;
Child, Preschool
;
Transplantation, Homologous
;
Child
;
Leukemia, Myeloid, Acute/genetics*
;
Oncogene Proteins, Fusion/genetics*
8.A preclinical evaluation and first-in-man case for transcatheter edge-to-edge mitral valve repair using PulveClip® transcatheter repair device.
Gang-Jun ZONG ; Jie-Wen DENG ; Ke-Yu CHEN ; Hua WANG ; Fei-Fei DONG ; Xing-Hua SHAN ; Jia-Feng WANG ; Ni ZHU ; Fei LUO ; Peng-Fei DAI ; Zhi-Fu GUO ; Yong-Wen QIN ; Yuan BAI
Journal of Geriatric Cardiology 2025;22(2):265-269
9.Gallstones, cholecystectomy, and cancer risk: an observational and Mendelian randomization study.
Yuanyue ZHU ; Linhui SHEN ; Yanan HUO ; Qin WAN ; Yingfen QIN ; Ruying HU ; Lixin SHI ; Qing SU ; Xuefeng YU ; Li YAN ; Guijun QIN ; Xulei TANG ; Gang CHEN ; Yu XU ; Tiange WANG ; Zhiyun ZHAO ; Zhengnan GAO ; Guixia WANG ; Feixia SHEN ; Xuejiang GU ; Zuojie LUO ; Li CHEN ; Qiang LI ; Zhen YE ; Yinfei ZHANG ; Chao LIU ; Youmin WANG ; Shengli WU ; Tao YANG ; Huacong DENG ; Lulu CHEN ; Tianshu ZENG ; Jiajun ZHAO ; Yiming MU ; Weiqing WANG ; Guang NING ; Jieli LU ; Min XU ; Yufang BI ; Weiguo HU
Frontiers of Medicine 2025;19(1):79-89
This study aimed to comprehensively examine the association of gallstones, cholecystectomy, and cancer risk. Multivariable logistic regressions were performed to estimate the observational associations of gallstones and cholecystectomy with cancer risk, using data from a nationwide cohort involving 239 799 participants. General and gender-specific two-sample Mendelian randomization (MR) analysis was further conducted to assess the causalities of the observed associations. Observationally, a history of gallstones without cholecystectomy was associated with a high risk of stomach cancer (adjusted odds ratio (aOR)=2.54, 95% confidence interval (CI) 1.50-4.28), liver and bile duct cancer (aOR=2.46, 95% CI 1.17-5.16), kidney cancer (aOR=2.04, 95% CI 1.05-3.94), and bladder cancer (aOR=2.23, 95% CI 1.01-5.13) in the general population, as well as cervical cancer (aOR=1.69, 95% CI 1.12-2.56) in women. Moreover, cholecystectomy was associated with high odds of stomach cancer (aOR=2.41, 95% CI 1.29-4.49), colorectal cancer (aOR=1.83, 95% CI 1.18-2.85), and cancer of liver and bile duct (aOR=2.58, 95% CI 1.11-6.02). MR analysis only supported the causal effect of gallstones on stomach, liver and bile duct, kidney, and bladder cancer. This study added evidence to the causal effect of gallstones on stomach, liver and bile duct, kidney, and bladder cancer, highlighting the importance of cancer screening in individuals with gallstones.
Humans
;
Mendelian Randomization Analysis
;
Gallstones/complications*
;
Female
;
Male
;
Cholecystectomy/statistics & numerical data*
;
Middle Aged
;
Risk Factors
;
Aged
;
Adult
;
Neoplasms/etiology*
;
Stomach Neoplasms/epidemiology*
10.Morin inhibits ubiquitination degradation of BCL-2 associated agonist of cell death and synergizes with BCL-2 inhibitor in gastric cancer cells.
Yi WANG ; Xiao-Yu SUN ; Fang-Qi MA ; Ming-Ming REN ; Ruo-Han ZHAO ; Meng-Meng QIN ; Xiao-Hong ZHU ; Yan XU ; Ni-da CAO ; Yuan-Yuan CHEN ; Tian-Geng DONG ; Yong-Fu PAN ; Ai-Guang ZHAO
Journal of Integrative Medicine 2025;23(3):320-332
OBJECTIVE:
Gastric cancer (GC) is one of the most common malignancies seen in clinic and requires novel treatment options. Morin is a natural flavonoid extracted from the flower stalk of a highly valuable medicinal plant Prunella vulgaris L., which exhibits an anti-cancer effect in multiple types of tumors. However, the therapeutic effect and underlying mechanism of morin in treating GC remains elusive. The study aims to explore the therapeutic effect and underlying molecular mechanisms of morin in GC.
METHODS:
For in vitro experiments, the proliferation inhibition of morin was measured by cell counting kit-8 assay and colony formation assay in human GC cell line MKN45, human gastric adenocarcinoma cell line AGS, and human gastric epithelial cell line GES-1; for apoptosis analysis, microscopic photography, Western blotting, ubiquitination analysis, quantitative polymerase chain reaction analysis, flow cytometry, and RNA interference technology were employed. For in vivo studies, immunohistochemistry, biomedical analysis, and Western blotting were used to assess the efficacy and safety of morin in a xenograft mouse model of GC.
RESULTS:
Morin significantly inhibited the proliferation of GC cells MKN45 and AGS in a dose- and time-dependent manner, but did not inhibit human gastric epithelial cells GES-1. Only the caspase inhibitor Z-VAD-FMK was able to significantly reverse the inhibition of proliferation by morin in both GC cells, suggesting that apoptosis was the main type of cell death during the treatment. Morin induced intrinsic apoptosis in a dose-dependent manner in GC cells, which mainly relied on B cell leukemia/lymphoma 2 (BCL-2) associated agonist of cell death (BAD) but not phorbol-12-myristate-13-acetate-induced protein 1. The upregulation of BAD by morin was due to blocking the ubiquitination degradation of BAD, rather than the transcription regulation and the phosphorylation of BAD. Furthermore, the combination of morin and BCL-2 inhibitor navitoclax (also known as ABT-737) produced a synergistic inhibitory effect in GC cells through amplifying apoptotic signals. In addition, morin treatment significantly suppressed the growth of GC in vivo by upregulating BAD and the subsequent activation of its downstream apoptosis pathway.
CONCLUSION
Morin suppressed GC by inducing apoptosis, which was mainly due to blocking the ubiquitination-based degradation of the pro-apoptotic protein BAD. The combination of morin and the BCL-2 inhibitor ABT-737 synergistically amplified apoptotic signals in GC cells, which may overcome the drug resistance of the BCL-2 inhibitor. These findings indicated that morin was a potent and promising agent for GC treatment. Please cite this article as: Wang Y, Sun XY, Ma FQ, Ren MM, Zhao RH, Qin MM, Zhu XH, Xu Y, Cao ND, Chen YY, Dong TG, Pan YF, Zhao AG. Morin inhibits ubiquitination degradation of BCL-2 associated agonist of cell death and synergizes with BCL-2 inhibitor in gastric cancer cells. J Integr Med. 2025; 23(3): 320-332.
Humans
;
Flavonoids/therapeutic use*
;
Stomach Neoplasms/pathology*
;
Animals
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Line, Tumor
;
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Ubiquitination/drug effects*
;
Mice
;
Drug Synergism
;
Mice, Inbred BALB C
;
Mice, Nude
;
Xenograft Model Antitumor Assays
;
Flavones


Result Analysis
Print
Save
E-mail