1.Epidemiological investigation of a maternal Listeria monocytogenes ST2 infection case
XU Wei ; LIN Yun ; ZHU Guoying ; SONG Hejia ; JIA Juanjuan ; SUN Yangming
Journal of Preventive Medicine 2025;37(2):189-191
Abstract
On September 26, 2024, a municipal hospital in Jiaxing City reported a maternal case of Listeria monocytogenes infection. In order to clarify the source of infection, the Jiaxing Center for Disease Control and Prevention immediately conducted the epidemiological investigation, laboratory testing and related disposal work. The case presented with fever (37.9 ℃), gradually intensifying paroxysmal abdominal pain without obvious cause, and went to hospital on the day of onset. Due to fetal intrauterine distress, a male infant was delivered by cesarean section on the same day. The epidemiological investigation identified that the case usually consumed fruits, often store fruits such as watermelon and grapes in the refrigerator alongside raw meat, and the refrigerator had never been cleaned or disinfected, posing a risk of cross contamination. Laboratory tests on amniotic fluid sample from the pregnant woman, infant blood sample showed positive results for Listeria monocytogenes infection. One strain of Listeria monocytogenes was detected in a smear sample from the inner wall of the refrigerator, and all the strains were ST2 type. Consuming fruits contaminated with Listeria monocytogenes may be the main source of infection. Food safety education for pregnant women and their family members should be strengthened to reduce the risk of infection.
2.Differentiation and Treatment of Lipid Turbidity Disease Based on Theory of "Spleen Ascending and Stomach Descending"
Yun HUANG ; Wenyu ZHU ; Wei SONG ; Xiaobo ZHANG ; Xin ZHOU ; Lele YANG ; Tao SHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):244-252
Lipid turbidity disease is a metabolic disease featuring lipid metabolism disorders caused by many factors such as social environment, diet, and lifestyle, which is closely related to many diseases in modern medicine, such as hyperlipidemia, obesity, fatty liver, atherosclerosis, metabolic syndrome, and cardiovascular and cerebrovascular diseases, with a wide range of influence and far-reaching harm. According to the Huangdi Neijing, lipid turbidity disease reflects the pathological change of the body's physiologic grease. Grease is the thick part of body fluids, which has the function of nourishing, and it is the initial state and source of important substances in the human body such as brain, marrow, essence, and blood. Once the grease of the human body is abnormal, it can lead to lipid turbidity disease. The Huangdi Neijing also points out the physiological relationship between the transportation and transformation of body fluids and the rise and fall of the spleen and stomach, which can deduce the pathological relationship between the occurrence of lipid turbidity disease and the abnormal rise and fall of the spleen and stomach functions. Lipid turbidity disease is caused by overconsumption of fatty and sweet foods or insufficient spleen and stomach endowments, leading to disorders of the function of promoting clear and reducing turbidity in the spleen and stomach. This leads to the transformation of thick grease in body fluids into lipid turbidity, which accumulates in the body's meridians, blood vessels, skin pores, and organs, forming various forms of metabolic diseases. The research team believed that the pathological basis of lipid turbidity disease was the abnormal rise and fall of the spleen and stomach and the obstruction of the transfer of grease. According to the different locations where lipid turbidity stays, it was divided into four common pathogenesis types: ''inability to distinguish between the clear and turbid, turbid stagnation in the Ying blood'', ''spleen not rising clear, turbid accumulation in the vessels'', ''spleen dysfunction, lipid retention in the pores'', ''spleen failure to transportation and transformation, and grease accumulation in the liver''. According to the pathogenesis, it could be divided into four common syndromes, namely, turbid stagnation in the Ying blood, turbid accumulation in the vessels, lipid retention in the pores, and grease accumulation in the liver, and the corresponding prescriptions were given for syndrome differentiation and treatment, so as to guide clinical differentiation and treatment of the lipid turbidity disease.
3.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
4.Research progress of nano drug delivery system based on metal-polyphenol network for the diagnosis and treatment of inflammatory diseases
Meng-jie ZHAO ; Xia-li ZHU ; Yi-jing LI ; Zi-ang WANG ; Yun-long ZHAO ; Gao-jian WEI ; Yu CHEN ; Sheng-nan HUANG
Acta Pharmaceutica Sinica 2025;60(2):323-336
Inflammatory diseases (IDs) are a general term of diseases characterized by chronic inflammation as the primary pathogenetic mechanism, which seriously affect the quality of patient′s life and cause significant social and medical burden. Current drugs for IDs include nonsteroidal anti-inflammatory drugs, corticosteroids, immunomodulators, biologics, and antioxidants, but these drugs may cause gastrointestinal side effects, induce or worsen infections, and cause non-response or intolerance. Given the outstanding performance of metal polyphenol network (MPN) in the fields of drug delivery, biomedical imaging, and catalytic therapy, its application in the diagnosis and treatment of IDs has attracted much attention and significant progress has been made. In this paper, we first provide an overview of the types of IDs and their generating mechanisms, then sort out and summarize the different forms of MPN in recent years, and finally discuss in detail the characteristics of MPN and their latest research progress in the diagnosis and treatment of IDs. This research may provide useful references for scientific research and clinical practice in the related fields.
5.Literature analysis of aplasia anemia/pure red cell aplasia induced by pembrolizumab
Yue LI ; Shichao ZHANG ; Cheng XIE ; Jianguo ZHU ; Yun LI
China Pharmacy 2025;36(6):737-741
OBJECTIVE To analyze the clinical characteristics of aplastic anemia (AA)/pure red cell aplasia (PRCA) induced by pembrolizumab, and provide reference for clinical safe drug use. METHODS Using search terms as “pembrolizumab”, “keytruda”, “anemia” and “aplastic anemia” in both Chinese and English, the literature related to AA/PRCA induced by pembrolizumab were retrieved from PubMed, Embase, CNKI, Wanfang and VIP databases, and then analyzed descriptively and statistically. RESULTS A total of 10 patients were included from 10 literature; among these 10 patients, there were 5 males and 5 females, with 5 patients being aged 65 or above. The primary disease was mainly metastatic melanoma (4 cases). AA/PRCA occurred 13 d-3 years after the first dose of pembrolizumab. The main clinical manifestations included fatigue, dyspnea, oral/nasal bleeding, diffuse purpura, etc.; 8 cases developed moderate anemia and 2 cases developed severe anemia. After discontinuation and receiving supportive therapy, 5 cases improved, 1 case worsened in anemia, and 4 cases died. CONCLUSIONS When using pembrolizumab in clinical practice, blood routine should be regularly monitored. When AA/PRCA and other related symptoms occur, pembrolizumab should be stopped in time and a therapy regimen should be formulated according to the patient’ condition, to ensure the safety of medication.
6.Role of VEGF Signaling Pathway in Pathological Mechanism of Colorectal Cancer and Traditional Chinese Medicine Intervention: A Review
Qiuning LIU ; Yutian ZHU ; Yun XU ; Yang YE ; Xiaoqiang JIA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):289-296
Colorectal cancer is a malignant tumor that originates from the epithelial cells of the colon and rectum. It has the third highest incidence and the second highest mortality rate among malignant tumors worldwide. With the rapid development of the economy and the increasing Westernization of dietary habits in China, its incidence in China has been rising year by year. Over the past decade, despite the introduction of numerous treatment methods for colorectal cancer, the efficacy of existing therapies remains unsatisfactory. In recent years, traditional Chinese medicine (TCM) has become a major focus in the treatment of colorectal cancer due to its advantages of multi-target, multi-pathway mechanisms and low toxicity and side effects. Vascular endothelial growth factor (VEGF) is an important angiogenic factor that promotes blood vessel formation, providing nutrients and oxygen for tumor growth. It also increases vascular permeability, allowing tumor cells to easily pass through the blood vessel wall into other tissues, thereby facilitating metastasis. Several studies have shown that TCM can inhibit tumor angiogenesis and lymphangiogenesis, promote tumor cell apoptosis, and inhibit the proliferation of colorectal cancer cells by acting on the VEGF signaling pathway, thereby delaying tumor growth. In recent years, research in this field has been rapidly updated, but there is a lack of relevant summaries, making subsequent literature searches inconvenient. Therefore, this article focuses on the physiological functions of the VEGF signaling pathway, its role in the occurrence of colorectal cancer, and the intervention of TCM on VEGF, providing a supplement and summary of relevant information to offer a reference for future research in this area.
7.Effect of Wenshen Tongluo Zhitong formula on mouse H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell co-culture system
Shijie ZHOU ; Muzhe LI ; Li YUN ; Tianchi ZHANG ; Yuanyuan NIU ; Yihua ZHU ; Qinfeng ZHOU ; Yang GUO ; Yong MA ; Lining WANG
Chinese Journal of Tissue Engineering Research 2025;29(1):8-15
BACKGROUND:Bone relies on the close connection between blood vessels and bone cells to maintain its integrity.Bones are in a physiologically hypoxic environment.Therefore,the study of angiogenesis and osteogenesis in hypoxic environment is closer to the microenvironment in vivo. OBJECTIVE:To explore the influence of Wenshen Tongluo Zhitong(WSTLZT)formula on H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell co-culture system in hypoxia environment and its related mechanism. METHODS:Enzyme digestion method and flow sorting technique were used to isolate and identify H-type bone microvascular endothelial cells.Mouse bone marrow mesenchymal stem cells were isolated and obtained by bone marrow adhesion method.H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell hypoxic co-culture system was established using Transwell chamber and anoxic culture workstation.WSTLZT formula powder was used to intervene in each group at a mass concentration of 50 and 100 μg/mL.The angiogenic function of H-type bone microvascular endothelial cells in the co-culture system was evaluated by scratch migration test and tube formation test.The osteogenic differentiation ability of bone marrow mesenchymal stem cells in the co-cultured system was evaluated by alkaline phosphatase staining and alizarin red staining.The protein and mRNA expression changes of PDGF/PI3K/AKT signal axis related molecules in H-type bone microvascular endothelial cells in the co-cultured system were detected by Western Blotting and q-PCR,respectively. RESULTS AND CONCLUSION:(1)Compared with the normal oxygen group,the scratch mobility and new blood vessel length of H-type bone microvascular endothelial cells were significantly higher(P<0.05);the osteogenic differentiation capacity of bone marrow mesenchymal stem cells was higher(P<0.05);the expression of PDGF/PI3K/AKT axis-related molecular protein and mRNA increased(P<0.05)in the hypoxia group.(2)Compared with the hypoxia group,scratch mobility and new blood vessel length were significantly increased in the H-type bone microvascular endothelial cells(P<0.05);bone marrow mesenchymal stem cells had stronger osteogenic function(P<0.05);the expression of PDGF/PI3K/AKT axis-related molecular proteins and mRNA further increased(P<0.05)after treatment with different dose concentrations of WSTLZT formula.These findings conclude that H-type angiogenesis and osteogenesis under hypoxia may be related to the PDGF/PI3K/AKT signaling axis,and WSTLZT formula may promote H-type vasculo-dependent bone formation by activating the PDGF/PI3K/AKT signaling axis,thereby preventing and treating osteoporosis.
8.Color-component correlation and mechanism of component transformation of processed Citri Reticulatae Semen.
Kui-Lin ZHU ; Jin-Lian ZOU ; Xu-Li DENG ; Mao-Xin DENG ; Hai-Ming WANG ; Rui YIN ; Zhang-Xian CHEN ; Yun-Tao ZHANG ; Hong-Ping HE ; Fa-Wu DONG
China Journal of Chinese Materia Medica 2025;50(9):2382-2390
High-performance liquid chromatography(HPLC) was used to determine the content of three major components in Citri Reticulatae Semen(CRS), including limonin, nomilin, and obacunone. The chromaticity of the CRS sample during salt processing and stir-frying was measured using a color difference meter. Next, the relationship between the color and content of the salt-processed CRS sample was investigated through correlation analysis. By integrating the oil bath technique for processing simulation with HPLC, the changes in the relative content of nomilin and its transformation products were analyzed, with its structural transformation pattern during processing identified. Additionally, RAW264.7 cells were induced with lipopolysaccharides(LPSs) to establish an inflammatory model, and the anti-inflammatory activity of nomilin and its transformation product, namely obacunone was evaluated. The results indicated that as processing progressed, E~*ab and L~* values showed a downward trend; a~* values exhibited a slow increase over a certain period, followed by no significant changes, and b~* values remained stable with no significant changes over a certain period and then started to decrease. The limonin content remained barely unchanged; the nomilin content decreased, and the obacunone increased significantly. The changing trends in content and color parameters during salt-processing and stir-frying were basically consistent. The content of nomilin and obacunone was significantly correlated with the colorimetric values(L~*, a~*, b~*, and E~*ab), while limonin content showed no significant correlation with these values. By analyzing HPLC patterns of nomylin at different heating temperatures and time, it was found that under conditions of 200-250 ℃ for heating of 5-60 min, the content of nomilin significantly decreased, while the obacunone content increased pronouncedly. The in vitro anti-inflammatory activity results indicated that compared to the model group, the group with a high concentration of nomilin and the groups with varying concentrations of obacunone showed significantly reduced release of nitric oxide(NO)(P<0.01). When both were at the same concentration, obacunone showed better performance in inhibiting NO release. In this study, the obvious correlation between the color and content of major components during the processing of CRS samples was identified, and the dynamic patterns of quality change in CRS samples during processing were revealed. Additionally, the study revealed and confirmed the transformation of nomilin into obacunone during processing, with the in vitro anti-inflammatory activity of obacunone significantly greater than that of nomilin. These findings provided a scientific basis for CRS processing optimization, tablet quality control, and its clinical application.
Mice
;
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
RAW 264.7 Cells
;
Limonins/chemistry*
;
Chromatography, High Pressure Liquid
;
Citrus/chemistry*
;
Color
;
Benzoxepins/chemistry*
;
Anti-Inflammatory Agents/chemistry*
9.Overall strategy for development and application of core outcome set of traditional Chinese medicine.
Jun-Hua ZHANG ; Bo PANG ; Yu-Yun LI ; Hui-Zhong ZHU ; Feng-Wen YANG ; Bo-Li ZHANG
China Journal of Chinese Materia Medica 2025;50(13):3506-3512
The scientific and standardized evaluation of clinical efficacy of traditional Chinese medicine(TCM) is the core requirement for promoting the high-quality development of TCM. Building a recognized evaluation outcome system that conforms to the clinical efficacy characteristics of TCM is a key fundamental issue in the production and transformation of clinical evidence in TCM. In response to the heterogeneity of evaluation outcomes and core issues such as "western law in the middle", the research on the core outcome set of TCM(COS-TCM) has undergone more than ten years of exploration and practice. Its methodological system has continued to deepen under the coordinated development of theoretical basis, technical methods, platform support, and talent team, achieving an important leap from early introduction to standardized system construction and entering a new stage of systematic development. However, the overall research scale, quality, and the translation and application of research results in COS-TCM are still insufficient. In response to the opportunities and challenges of the new development stage, this article systematically reviews the development history and research status of COS-TCM, clarifies the basic principles of "international standards + TCM characteristics" and the key tasks of "selection, improvement, and creation", and proposes a three-step development path of "exploration and research, standard development, and regulatory transformation" to promote the standardization, systematization, and scientific development of related research. To ensure the effective implementation of research results, key promotion strategies such as upgrading research platforms, strengthening support systems, and optimizing collaborative mechanisms have been planned to drive COS-TCM to better serve clinical research, evidence translation, and new drug review.
Medicine, Chinese Traditional/methods*
;
Humans
;
Drugs, Chinese Herbal/standards*
10.Three new chalcone C-glycosides from Carthami Flos.
Jia-Xu BAO ; Yong-Xiang WANG ; Xian ZHANG ; Ya-Zhu YANG ; Yue LIN ; Jiao-Jiao YIN ; Yun-Fang ZHAO ; Hui-Xia HUO ; Peng-Fei TU ; Jun LI
China Journal of Chinese Materia Medica 2025;50(13):3715-3745
The chemical components of Carthami Flos were investigated by using macroporous resin, silica gel column chromatography, reversed-phase octadecylsilane(ODS) column chromatography, Sephadex LH-20, and semi-preparative high-performance liquid chromatography(HPLC). The planar structures of the compounds were established based on their physicochemical properties and ultraviolet-visible(UV-Vis), infrared(IR), high-resolution electrospray ionization mass spectrometry(HR-ESI-MS), and nuclear magnetic resonance(NMR) spectroscopic technology. The absolute configurations were determined by comparing the calculated and experimental electronic circular dichroism(ECD). Six flavonoid C-glycosides were isolated from the 30% ethanol elution fraction of macroporous resin obtained from the 95% ethanol extract of Carthami Flos, and identified as saffloquinoside F(1), 5-hydroxysaffloneoside(2), iso-5-hydroxysaffloneoside(3), isosafflomin C(4), safflomin C(5), and vicenin 2(6). Among these, the compounds 1 to 3 were new chalcone C-glycosides. The compounds 1, 2, 4, and 5 could significantly increase the viability of H9c2 cardiomyocytes damaged by oxygen-glucose deprivation/reoxygenation(OGD/R) at a concentration of 50 μmol·L~(-1), showing their good cardioprotective activity.
Glycosides/pharmacology*
;
Flowers/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Carthamus tinctorius/chemistry*
;
Chalcones/pharmacology*
;
Animals


Result Analysis
Print
Save
E-mail