1.Exploring Effect of Buchong Tiaojing Prescription on Ferroptosis in Ovarian Tissue of Rat Model of Diminished Ovarian Reserve and Its Mechanism from Perspective of NLRP3 Inflammasome
Yixuan WANG ; Zuang LI ; Yunling ZHENG ; Yucheng LI ; Songping LUO ; Ling ZHU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):40-48
ObjectiveTo explore the therapeutic mechanism of Buchong Tiaojing prescription for rats with diminished ovarian reserve (DOR) from the perspectives of nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome and ferroptosis. MethodsA total of 48 female SD rats were randomly divided into a normal group, a model group, low, medium, and high dose groups of Buchong Tiaojing prescription, and an MCC950 group, with eight rats in each group. Except the normal group, all the other groups were injected subcutaneously on the back of the neck with D-galactose to prepare the DOR rat model. From the 15th day of modeling, the rats in the low, medium, and high dose groups of Buchong Tiaojing prescription were subjected to gavage daily at doses of 14.4, 28.8, 57.6 g·kg-1, respectively. Rats in the MCC950 group were injected intraperitoneally with MCC950 at a dose of 10 mg·kg-1, once every other day. The interventions of all the groups lasted for 4 weeks. The estrous cycle of the rats was observed with vaginal exfoliated cell smear. Hematoxylin-eosin (HE) staining was performed to observe the development of follicles and corpus luteum in the ovary. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the levels of serum sex hormones and interleukin-1β (IL-1β). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot assay were performed to detect the mRNA and protein expression of NLRP3 inflammasome, acyl-CoA synthetase long-chain family member 4 (ACSL4), transferrin receptor 1 (TFR1), and glutathione peroxidase 4 (GPX4), and oxidative stress kits were used to detect ovarian superoxide dismutase (SOD) and malondialdehyde (MDA) levels. ResultsDuring the experiment, one rat died in the high dose group of Buchong Tiaojing prescription, and a total of 47 rats were finally included in the index tests and statistics. Compared with those in the normal group, rats in the model group had significantly disturbed estrous cycles, increased number of atretic follicles, and significant disorder of serum sex hormones. The mRNA and protein expression of NLRP3 inflammasome, ACSL4, and TFR1 in ovarian tissue was up-regulated (P<0.01), while that of GPX4 was significantly down-regulated (P<0.01). The SOD content in the ovary was decreased significantly, while the MDA level was increased (P<0.01). After drug intervention, the estrous cycle of rats was basically resumed, and the follicles at all levels were more structurally intact and significantly increased in number. Additionally, the levels of serum sex hormones and IL-1β were significantly improved. The mRNA and protein expression of NLRP3 inflammasome, ACSL4, and TFR1 were down-regulated, while that of GPX4 was significantly up-regulated, and the ovarian oxidative stress was alleviated (P<0.05, P<0.01), especially in the high dose group of Buchong Tiaojing prescription and the MCC950 group. ConclusionInflammatory injury and ferroptosis occur in the ovaries of DOR rats, and the Buchong Tiaojing prescription is able to inhibit ovarian NLRP3 inflammasome, alleviate the degree of ovarian ferroptosis, and improve ovarian reserve.
2.Cyclocarya paliurus Polysaccharide Inhibits Benign Prostatic Hyperplasia by Reducing 5α-Reductase 2
Qinhui DAI ; Mengxia YAN ; Chen WANG ; Chenjun SHEN ; Chenying JIANG ; Bo YANG ; Huajun ZHAO ; Zhihui ZHU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):107-114
ObjectiveTo investigate the effect and mechanism of polysaccharide in water extract of Cyclocarya paliurus (CPWP) in inhibiting benign prostatic hyperplasia (BPH). MethodsCPWP was obtained by heating reflux, aqueous extraction, alcohol precipitation, and freeze drying. The chemical composition and structural properties of CPWP were analyzed by high performance liquid chromatography with 1-pheny-3-methyl-5-pyrazolone pre-column derivatization and infrared spectroscopy. Male SD rats were randomly assigned into control, model, finasteride (ig 5 mg·kg-1), and low-, medium-, and high-dose (ig 50, 75, 100 mg·kg-1) CPWP groups, with 8 rats in each group. The BPH model was established by subcutaneously injecting propionate testosterone in castrated rats. The rats in the drug intervention groups were administrated with corresponding drugs, and those in the control group were administrated with an equal volume of normal saline each day. After 30 consecutive days, the rats were sacrificed, and the prostate tissue was separated and weighed. The effects of drug interventions on the body weight, prostate wet weight, and prostate index of rats were examined. The prostate tissue was stained with hematoxylin-eosin (HE) for observation of pathological changes. Enzyme-linked immunosorbent assay was employed to measure the level of dihydrotestosterone (DHT), and immunohistochemical staining was used to detect the expression of steroid 5 alpha-reductase 2 (SRD5A2) and Ki67 in the prostate tissue. ResultsCPWP was identified as a saccharide, with characteristic absorption peaks of saccharides. CPWP showed the total sugar content of 44.15% and molecular weight within the range of 5.5-78.8 kDa, being composed of mannose, rhamnose, galacturonic acid, glucose, galactose, xylose, and arabinose. Compared with the control group, the model group had significantly increased prostate wet weight and prostate index (P<0.01), thick and tall prostate epithelial cells, increased internal wrinkles, papillary expansion into the cavity, an elevation in DHT level in the serum, and up-regulated expression of SRD5A2 and Ki67 in the prostate tissue (P<0.05, P<0.01). Compared with the model group, both the finasteride and CPWP groups showed decreases in prostate wet weight and prostate index (P<0.05, P<0.01), thinned prostate epithelial cells, with only a small portion of internal wrinkles and papillary expansion into the cavity, shortened papillary protrusions, lowered DHT level in the serum, and down-regulated expression of SRD5A2 and Ki67 in the prostate tissue (P<0.01). Moreover, CPWP exerted effects in a dose-dependent manner. ConclusionCPWP inhibits BPH by regulating the expression of SRD5A2.
3.Mechanism of in Vitro and in vivo Models of Osteoporosis Regulation by Active Ingredients of Traditional Chinese Medicine: A Review
Ming YANG ; Jinji WANG ; Xuefeng ZHUANG ; Xiaolei FANG ; Zhijie ZHU ; Huiwei BAO ; Lijing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):281-289
Osteoporosis is a common bone disease, whose incidence is still on the rise, posing great challenges to patients and society. This review mainly studies the pathogenesis of osteoporosis from the aspects of oxidative stress, inflammatory response, and glucolipotoxicity-induced injury and clarifies the efficacy and mechanism of some active ingredients of traditional Chinese medicine against osteoporosis through the integration of in vitro and in vivo experiments. The experimental results suggest that some active ingredients can improve bone resorption markers and maintain bone homeostasis by modulating inflammation, oxidative stress, etc. These active ingredients regulate osteoporosis through the receptor activator of nuclear transcription factor-κB (NF-κB) ligand (RANKL) pathway, osteoprotegerin (OPG) pathway, Wnt/β-catenin pathway, NF-κB pathway, mitogen-activated protein kinase (MAPK) pathway, adenosine monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, and oxidative stress pathway. This review provides ideas for the progress of the prevention and treatment of osteoporosis with the active ingredients of traditional Chinese medicine, aiming to provide new potential lead compounds and reference for the development of innovative drugs and clinical therapy for the treatment of osteoporosis.
4.Study on manipulation and stability of Imipenem and cilastatin sodium for injection in children
Xianming ZHANG ; Zengyan ZHU ; Wenjing WANG ; Xiaohuan DU
China Pharmacy 2025;36(1):101-105
OBJECTIVE To evaluate the effect of manipulation of Imipenem and cisplatin sodium (ICS) for injection on the consistency of its main drug imipenem (IPN) content, and the stability of different concentrations of ICS solution, to provide a reference for the safe and effective use of ICS in children. METHODS Three operators prepared ICS solutions according to the two commonly used dosage methods for children (10 mL or 20 mL 0.9% Sodium chloride injection to prepare the initial ICS solution and draw the required dose from the initial suspension). The content of IPN was determined by ultra-high performance liquid chromatography-tandem mass spectrometry after parallel processing. The content consistency of solutions in each group was determined according to the coefficient of variation (CV)<15% of the IPN content. ICS test solution X1 was prepared according to the instructions, and then test solutions X2 and X3 were prepared by diluting X1 with 0.9% Sodium chloride injection in the volume ratios of 1∶1 and 1∶2, which were stored at room temperature ([ 23.0±0.5) ℃], in a thermostatic water bath at 30 ℃, and in a refrigerator at 2-8 ℃. The stability of the drug solution was determined by the ratio of the IPN mass concentration measured at the specified temperature and time to the initial (0 h) mass concentration (if the ratio was≥90%, it was considered that the drug solution was stable). RESULTS CV of IPN content was <15% in each group of solutions prepared with two manipulation methods by each operator, indicating a small deviation in IPN content. The solutions at the three concentration levels were stable at room temperature for 6 h or refrigerated for 18 h. The test solutions X1 and X2 were also stable when placed at 30 ℃ for 6 h, but the IPN concentration in test solution X3 decreased by about 20% compared with that of 0 h. CONCLUSIONS The consistency of the content of IPN is good in the two commonly used methods for ICS manipulation in children. The stability of ICS solution is affected by concentration, temperature and time. Lower concentrations at higher temperatures resulted in decreased stability of IPN. Clinical attention should be paid to controlling the amount of solvent as well as temperature and time during preparation and use.
5.Correlation Analysis Between Microbial Community Changes and Medicinal Quality Formation During Processing of Angelicae Dahuricae Radix
Xiaoyan CHEN ; Xinglong ZHU ; Qingxia GAN ; Jiahao WANG ; Guangqin AN ; Qinghua WU ; Jin PEI ; Yuntong MA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):198-207
ObjectiveTo compare the differences in color, odor, coumarin content and microbial community composition of Angelicae Dahuricae Radix(ADR) during different drying processes, and to explore the correlation between changes in microbial community composition and changes in quality indexes of ADR. MethodsThe fresh ADR was processed at three drying temperatures(50, 70, 100 ℃) by drying and steaming cutting, semi-fresh cutting and drying, fresh cutting and drying, and sulfur fumigation methods. The color values of samples were extracted by Adobe Photoshop 2022 software and subjected to principal component analysis(PCA), electronic nose was used to identify the odor information of medicinal powders and subjected to loadings analysis, PCA, and linear discriminant analysis(LDA), and high performance liquid chromatography(HPLC) was used to determine the contents of five coumarins(bergapten, oxypeucedanin, imperatorin, phellopterin, isoimperatorin). The samples for microbial detection were taken from fresh dried samples, 50 ℃(dried and steamed cut, sulfur fumigated) samples, and 100 ℃(dried and steamed cut) samples when the water content was 50% and 14%, respectively. And the changes of microbial community composition during processing were determined by high-throughput sequencing method. The relationship between the changes of microbial community composition and the changes of odor, color and active component content of ADR during drying process was analyzed by Pearson correlation analysis. ResultsThe color quantification results showed that an increase in drying temperature led to the decrease of brightness value(L), and the increases of red-green value(a) and yellow-blue value(b), and the change of processing method had no obvious effect on the color of medicinal materials. The results of odor quantification showed that W1S, W2S, W5S, W2W and W1W sensor were sensitive to the odor changes of ADR and could be used to distinguish ADR decoction pieces from different processing methods. The results of HPLC showed that the coumarin content of ADR decreased with the increase of drying temperature and the delay of processing time, the optimal processing method was drying and steaming cutting method, and the optimal temperature was 50 ℃. High-throughput sequencing results showed that the dominant bacteria in ADR during processing were Achromobacter, Agrobacterium, Nocardioides, Mycobacterium and Enterobacter, the dominant fungi were Coprinopsis, Meyerozyma and Apiotrichum. The results of correlation analysis showed that the quality indexes of ADR were positively correlated with Agrobacterium, Mycobacterium in bacteria, Candida in fungi, and negatively correlated with Bacillus in bacteria. ConclusionThere are significant differences in the color, odor, coumarin content and microbial community composition of ADR in different drying processes, and the best drying method is drying and steaming cutting at 50 ℃. The relative abundance changes of 9 bacterial genera and 4 fungal genera are closely related to the quality formation of ADR during the drying process.
6.Invasion and Metastasis in Colorectal Cancer Mediated by Traditional Chinese Medicine via Cell Signaling Pathway: A Review
Min GUO ; Wenyan YU ; Naicheng ZHU ; Yuwei YAN ; Chen ZHONG ; Xiudan CHEN ; Nanxin LI ; Guojuan WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):323-330
Colorectal cancer is a common and malignant tumor in the digestive tract. Invasion and metastasis of cancer cells are key factors leading to the high mortality rate and postoperative recurrence of colorectal cancer. Chemotherapy is the main treatment method for preventing recurrence of this disease. However, there are many toxic side effects in clinical application, which seriously hinder the treatment process. Therefore, it is imperative to search for efficient and low-toxicity drugs. Traditional Chinese medicine (TCM) has a long history of treating colorectal cancer and offers advantages such as safety, effectiveness, multiple targets, multiple pathways and minimal toxic side effects, which have made it increasingly popular worldwide. According to TCM, the pathogenesis of colorectal cancer is rooted in both deficiency and excess. TCM formulas mainly focus on tonifying the body to address the invasion and metastasis of colorectal cancer, such as Jianpi compound, Jianpi Xiaoai decoction, and Bushen Jiedu Sanjie decoction. TCM monomers, such as emodin, berberine, and tanshinone, mainly focus on clearing heat and removing toxin, circulating blood and transforming stasis, and resolving swelling and dispersing nodules. Signaling pathways play a crucial role for analyzing invasion and metastasis, and research has shown that pathways such as Wnt/β-catenin, phosphatidylinositol-3 kinase/protein kinase (PI3K/Akt), Janus kinase 2/signal transduction and transcription activating factor 3 (JAK2/STAT3), nuclear factors-κB (NF-κB), vascular endothelial growth factor (VEGF) play important roles in the invasion and metastasis of colorectal cancer. The invasion and metastasis of colorectal cancer can be inhibited via regulating the key proteins and related factors in these pathways. In this review, we searched various literature databases, such as PubMed, China National Knowledge Infrastructure (CNKI), and VIP, using keywords such as "colorectal cancer", "signaling pathway", "invasion and metastasis", and "traditional Chinese medicine", to summarize and analyze the relevant pathways of TCM compounds and monomers against invasion and metastasis of colorectal cancer published in the past five years. The review aims to provide new insights and references for in-depth research on the therapy for invasion and metastasis of colorectal cancer and new drug development.
7.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
8.The Impairment Attention Capture by Topological Change in Children With Autism Spectrum Disorder
Hui-Lin XU ; Huan-Jun XI ; Tao DUAN ; Jing LI ; Dan-Dan LI ; Kai WANG ; Chun-Yan ZHU
Progress in Biochemistry and Biophysics 2025;52(1):223-232
ObjectiveAutism spectrum disorder (ASD) is a neurodevelopmental condition characterized by difficulties with communication and social interaction, restricted and repetitive behaviors. Previous studies have indicated that individuals with ASD exhibit early and lifelong attention deficits, which are closely related to the core symptoms of ASD. Basic visual attention processes may provide a critical foundation for their social communication and interaction abilities. Therefore, this study explores the behavior of children with ASD in capturing attention to changes in topological properties. MethodsOur study recruited twenty-seven ASD children diagnosed by professional clinicians according to DSM-5 and twenty-eight typically developing (TD) age-matched controls. In an attention capture task, we recorded the saccadic behaviors of children with ASD and TD in response to topological change (TC) and non-topological change (nTC) stimuli. Saccadic reaction time (SRT), visual search time (VS), and first fixation dwell time (FFDT) were used as indicators of attentional bias. Pearson correlation tests between the clinical assessment scales and attentional bias were conducted. ResultsThis study found that TD children had significantly faster SRT (P<0.05) and VS (P<0.05) for the TC stimuli compared to the nTC stimuli, while the children with ASD did not exhibit significant differences in either measure (P>0.05). Additionally, ASD children demonstrated significantly less attention towards the TC targets (measured by FFDT), in comparison to TD children (P<0.05). Furthermore, ASD children exhibited a significant negative linear correlation between their attentional bias (measured by VS) and their scores on the compulsive subscale (P<0.05). ConclusionThe results suggest that children with ASD have difficulty shifting their attention to objects with topological changes during change detection. This atypical attention may affect the child’s cognitive and behavioral development, thereby impacting their social communication and interaction. In sum, our findings indicate that difficulties in attentional capture by TC may be a key feature of ASD.
9.Mechanism of Zuoguiwan in Inhibiting Osteoclast Activation Induced by Breast Cancer via Regulating p38 MAPK/ERK Signaling Pathway
Jianjiang FU ; Yinlong MEI ; Junchao MA ; Xiaocui ZHU ; Wei WANG ; Hong LYU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):1-9
ObjectiveTo investigate the effects of Zuoguiwan on osteoclast activation induced by breast cancer and its mechanism. MethodsTo simulate breast cancer-induced osteoclastic bone metastasis, RAW264.7 cells were cultured in conditioned medium containing 50% supernatant of MDA-MB-231 breast cancer cells. The dosages of Zuoguiwan used in the experiment were sera containing 5% and 10% Zuoguiwan. Tartrate-resistant acid phosphatase (TRAP) staining was used to detect osteoclast activation. Enzyme-linked immunosorbent assay (ELISA) was used to measure Cathepsin K secretion from RAW264.7 cells. Real-time quantitative polymerase chain reaction (PCR) was used to detect the mRNA expression levels of osteocalcin (OCN) and bone sialoprotein (BSP). Immunoprecipitation was employed to detect the interaction between Runt-related transcription factor 2 (Runx2) and core binding factor β subunit (CBF-β). Western blot was used to assess the protein expression of Runx2, phosphorylated Runx2 (p-Runx2), extracellular signal-regulated kinases 1/2 (ERK1/2), p-ERK1/2, p38 mitogen-activated protein kinase (MAPK), p-p38 MAPK, and CBF-β. ResultsCompared with the blank group, the MDA-MB-231 cell supernatant group showed a significant increase in TRAP-positive cell counts and Cathepsin K secretion. Meanwhile, the expression levels of p-Runx2, Runx2-CBF-β interaction, BSP and OCN mRNA, p-p38 MAPK, and p-ERK1/2 proteins were significantly decreased (P<0.01). Compared with the MDA-MB-231 cell supernatant group, Zuoguiwan-containing sera significantly reduced TRAP-positive cell counts and Cathepsin K secretion (P<0.01), significantly increased p-Runx2, BSP and OCN mRNA expression, as well as p-p38 MAPK and p-ERK1/2 protein levels, and promoted the interaction between Runx2 and CBF-β (P<0.01). No significant change in Runx2 expression was observed. Compared to the blank group, the BVD-523 group showed significantly lower expression of p-p38 MAPK and p-ERK1/2 proteins (P<0.01). Compared with the BVD-523 group, both low and high concentration Zuoguiwan-containing sera groups showed significantly higher p-p38 MAPK expression (P<0.01), and the high concentration Zuoguiwan group also exhibited a significant increase in p-ERK1/2 expression (P<0.01), while no statistical difference was found in the low-dose group. ConclusionZuoguiwan inhibits osteoclast activation by inducing phosphorylation of the key transcriptional regulator Runx2 in intra-osteoclast bone formation, and this process is closely associated with the activation of the p38 MAPK/ERK signaling pathway.
10.Combination of Components from Tripterygii Radix et Rhizoma-Chuanxiong Rhizoma Affects RA-FLSs by Regulating NF-κB, Nrf2/HO-1 Signaling Pathways and Bcl-2/Caspase-3 Expression
Yongmei GUAN ; Zhiyan WAN ; Shuhui WANG ; Weifeng ZHU ; Zhiyong LIU ; Cheng JIANG ; Zhenzhong ZANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):17-26
ObjectiveTo investigate the effects of the combination of components from Tripterygii Radix et Rhizoma and Chuanxiong Rhizoma on rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) and the underlying mechanism. MethodsRA-FLSs were grouped as follows: blank control, positive control (methotrexate), Tripterygii Radix et Rhizoma components, Chuanxiong Rhizoma components, and components from Tripterygii Radix et Rhizoma+Chuanxiong Rhizoma. The cell-counting kit-8 (CCK-8) assay was employed to the cell proliferation, invasion, and apoptosis. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, reactive oxygen species (ROS), and malondiadehyde (MDA) in cells were measured. Western blot was employed to determine the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor-kappa B (NF-κB) p65, phosphorylated inhibitory subunit of NF-κBα (p-IκBα), cysteinyl aspartate-specific protease-3 (Caspase-3), and B-cell lymphoma 2 (Bcl-2). Real-time PCR was employed to determine the mRNA levels of Nrf2, HO-1, and NF-κB p65. ResultsThe cells in the groups of positive control, Tripterygii Radix et Rhizoma components, Chuanxiong Rhizoma components, and components from Tripterygii Radix et Rhizoma+Chuanxiong Rhizoma were treated with 2.50 mg·L-1 methotrexate, 0.20 mg·L-1 triptolide + 0.20 mg·L-1 celastrol, 5.00 mg·L-1 ferulic acid + 20.00 mg·L-1 ligustrazine, 0.20 mg·L-1 triptolide + 0.20 mg·L-1 celastrol + 5.00 mg·L-1 ferulic acid + 20.00 mg·L-1 ligustrazine, respectively. Compared with the blank control group, drug administration reduced the proliferation and invasion and increased the apoptosis of cells (P<0.01), lowered the levels of TNF-α, IL-6, ROS, and MDA (P<0.01), up-regulated the mRNA and protein levels of Caspase-3, Nrf2, and HO-1 (P<0.01), and down-regulated the mRNA and protein levels of Bcl-2, NF-κB p65, and p-IκBα (P<0.01). Compared with the Tripterygii Radix et Rhizoma components group, the combination of components from Tripterygii Radix et Rhizoma+Chuanxiong Rhizoma inhibited the proliferation and invasion (P<0.05) and promoted the apoptosis of RA-FLSs, up-regulated the mRNA levels of Nrf2 and HO-1 and protein levels of Nrf2 and Caspase-3 (P<0.05), and down-regulated the protein levels of NF-κB p65 and p-IκBα (P<0.05). ConclusionThe combination of components from Chuanxiong Rhizoma and Tripterygii Radix et Rhizoma can inhibit the proliferation and invasion and promote the apoptosis of RA-FLSs and alleviate oxidative stress and inflammation by inhibiting the NF-κB signaling pathway, activating the Nrf2/HO-1 pathway, and regulating the expression of Bcl-2/Caspase-3.

Result Analysis
Print
Save
E-mail