1.Therapeutic Mechanisms of Xiebai San on Lung Heat-induced Cough and Asthma via Modulating Lung-Brain Axis Metabolism Based on Spatial Metabolomics
Yue XU ; Fuzhi MA ; Yeerjiang AYIMAN ; Lin ZHU ; Qingce ZANG ; Zhijie MA
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):41-48
ObjectiveBased on whole-animal mass spectrometry imaging technology, spatial metabolomics was used to characterize in situ the metabolic alteration patterns in the lungs and brain of a rat model of lung heat-induced cough and asthma, as well as after treatment with Xiebai San. MethodsNine Sprague-Dawley (SD) rats were randomly divided into a blank group (physiological saline), a model group (physiological saline), and a Xiebai San group (9 g·kg-1), with three rats in each group. The model group and the Xiebai San group were both induced using lipopolysaccharide-ovalbumin (LPS-OVA) to establish an asthma rat model. After treatment with Xiebai San, the animals were euthanized on day 21 and rapidly frozen in liquid nitrogen to preserve morphology. Whole-animal tissue sections were prepared using a cryomicrotome, and imaging was performed using the Air-flow-assisted Desorption Electrospray Ionization Mass Spectrometry Imaging (AFADESI-MSI) platform. Based on the corresponding optical images, ion data of metabolites from the lung and brain tissues of each group were extracted. Differential metabolites were analyzed using SIMCA and GraphPad Prism 9.0 software. Metabolites were identified using the HMDB (
2.Therapeutic Mechanisms of Xiebai San on Lung Heat-induced Cough and Asthma via Modulating Lung-Brain Axis Metabolism Based on Spatial Metabolomics
Yue XU ; Fuzhi MA ; Yeerjiang AYIMAN ; Lin ZHU ; Qingce ZANG ; Zhijie MA
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):41-48
ObjectiveBased on whole-animal mass spectrometry imaging technology, spatial metabolomics was used to characterize in situ the metabolic alteration patterns in the lungs and brain of a rat model of lung heat-induced cough and asthma, as well as after treatment with Xiebai San. MethodsNine Sprague-Dawley (SD) rats were randomly divided into a blank group (physiological saline), a model group (physiological saline), and a Xiebai San group (9 g·kg-1), with three rats in each group. The model group and the Xiebai San group were both induced using lipopolysaccharide-ovalbumin (LPS-OVA) to establish an asthma rat model. After treatment with Xiebai San, the animals were euthanized on day 21 and rapidly frozen in liquid nitrogen to preserve morphology. Whole-animal tissue sections were prepared using a cryomicrotome, and imaging was performed using the Air-flow-assisted Desorption Electrospray Ionization Mass Spectrometry Imaging (AFADESI-MSI) platform. Based on the corresponding optical images, ion data of metabolites from the lung and brain tissues of each group were extracted. Differential metabolites were analyzed using SIMCA and GraphPad Prism 9.0 software. Metabolites were identified using the HMDB (
3.Research progress and clinical challenges in immunosuppressive regimens for xenotransplantation
Yu ZHANG ; Kun WANG ; Xuyuan ZHU ; Yuxiang CHEN ; Tao LI ; Xiaojie MA ; Hongtao JIANG
Organ Transplantation 2026;17(1):28-35
As a pivotal strategy to alleviate the shortage of organ donors, xenotransplantation has achieved remarkable advances in both pre-clinical and clinical studies in recent years, driven by continuous optimization of gene modification techniques and immunosuppressive regimens. Nevertheless, clinical translation still confronts formidable challenges, including rejection and heightened infection risks, which severely compromise long-term graft survival. Consequently, the role of immunosuppressive regimens in xenotransplantation has become increasingly prominent. This article summarizes the mechanisms underlying xenogeneic immune rejection, the latest developments in immunosuppressive regimens, cutting-edge strategies for inducing immune tolerance and the major hurdles facing clinical xenotransplantation. It delves into potential optimization strategies and directions for future clinical research, aiming to offer theoretical insights and practical guidance for the safe and effective application of clinical xenotransplantation.
4.Development and validation of a prognostic nomogram model for patients with the lower third and abdominal oesophageal adenocarcinoma
Zhengshui XU ; Dandan LIU ; Jiantao JIANG ; Ranran KONG ; Jianzhong LI ; Yuefeng MA ; Zhenchuan MA ; Jia CHEN ; Minxia ZHU ; Shaomin LI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):201-207
Objective To establish an individualized nomogram model and evaluate its efficacy to provide a possible evaluation basis for the prognosis of lower third and abdominal part of oesophageal adenocarcinoma (EAC). Methods Lower third and abdominal part of EAC patients from 2010 to 2015 were chosen from the SEER Research Plus Database (17 Regs, 2022nov sub). The patients were randomly allocated to the training cohort and the internal validation cohort with a ratio of 7∶3 using bootstrap resampling. The Cox proportional hazards regression analysis was used to determine significant contributors to overall survival (OS) in EAC patients, which would be elected to construct the nomogram prediction model. C-index, calibration curve and receiver operating characteristic (ROC) curve were performed to evaluate its efficacy. Finally, the efficacy to evaluate the OS of EAC patients was compared between the nomogram prediction model and TNM staging system. Results In total, 3945 patients with lower third and abdominal part of EAC were enrolled, including 3475 males and 470 females with a median age of 65 (57-72) years. The 2761 patients were allocated to the training cohort and the remaining 1184 patients to the internal validation cohort. In the training and the internal validation cohorts, the C-index of the nomogram model was 0.705 and 0.713, respectively. Meanwhile, the calibration curve also suggested that the nomogram model had a strong capability of predicting 1-, 3-, and 5-year OS rates of EAC patients. The nomogram also had a higher efficacy than the TNM staging system in predicting 1-, 3-, and 5-year OS rates of EAC patients. Conclusion This nomogram prediction model has a high efficiency for predicting OS in the patients with lower third and abdominal part of EAC, which is higher than that of the current TNM staging system.
5.Clinical practice guidelines for intraoperative cell salvage in patients with malignant tumors
Changtai ZHU ; Ling LI ; Zhiqiang LI ; Xinjian WAN ; Shiyao CHEN ; Jian PAN ; Yi ZHANG ; Xiang REN ; Kun HAN ; Feng ZOU ; Aiqing WEN ; Ruiming RONG ; Rong XIA ; Baohua QIAN ; Xin MA
Chinese Journal of Blood Transfusion 2025;38(2):149-167
Intraoperative cell salvage (IOCS) has been widely applied as an important blood conservation measure in surgical operations. However, there is currently a lack of clinical practice guidelines for the implementation of IOCS in patients with malignant tumors. This report aims to provide clinicians with recommendations on the use of IOCS in patients with malignant tumors based on the review and assessment of the existed evidence. Data were derived from databases such as PubMed, Embase, the Cochrane Library and Wanfang. The guideline development team formulated recommendations based on the quality of evidence, balance of benefits and harms, patient preferences, and health economic assessments. This study constructed seven major clinical questions. The main conclusions of this guideline are as follows: 1) Compared with no perioperative allogeneic blood transfusion (NPABT), perioperative allogeneic blood transfusion (PABT) leads to a more unfavorable prognosis in cancer patients (Recommended); 2) Compared with the transfusion of allogeneic blood or no transfusion, IOCS does not lead to a more unfavorable prognosis in cancer patients (Recommended); 3) The implementation of IOCS in cancer patients is economically feasible (Recommended); 4) Leukocyte depletion filters (LDF) should be used when implementing IOCS in cancer patients (Strongly Recommended); 5) Irradiation treatment of autologous blood to be reinfused can be used when implementing IOCS in cancer patients (Recommended); 6) A careful assessment of the condition of cancer patients (meeting indications and excluding contraindications) should be conducted before implementing IOCS (Strongly Recommended); 7) Informed consent from cancer patients should be obtained when implementing IOCS, with a thorough pre-assessment of the patient's condition and the likelihood of blood loss, adherence to standardized internally audited management procedures, meeting corresponding conditions, and obtaining corresponding qualifications (Recommended). In brief, current evidence indicates that IOCS can be implemented for some malignant tumor patients who need allogeneic blood transfusion after physician full evaluation, and LDF or irradiation should be used during the implementation process.
6.Mechanism of Zuoguiwan in Inhibiting Osteoclast Activation Induced by Breast Cancer via Regulating p38 MAPK/ERK Signaling Pathway
Jianjiang FU ; Yinlong MEI ; Junchao MA ; Xiaocui ZHU ; Wei WANG ; Hong LYU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):1-9
ObjectiveTo investigate the effects of Zuoguiwan on osteoclast activation induced by breast cancer and its mechanism. MethodsTo simulate breast cancer-induced osteoclastic bone metastasis, RAW264.7 cells were cultured in conditioned medium containing 50% supernatant of MDA-MB-231 breast cancer cells. The dosages of Zuoguiwan used in the experiment were sera containing 5% and 10% Zuoguiwan. Tartrate-resistant acid phosphatase (TRAP) staining was used to detect osteoclast activation. Enzyme-linked immunosorbent assay (ELISA) was used to measure Cathepsin K secretion from RAW264.7 cells. Real-time quantitative polymerase chain reaction (PCR) was used to detect the mRNA expression levels of osteocalcin (OCN) and bone sialoprotein (BSP). Immunoprecipitation was employed to detect the interaction between Runt-related transcription factor 2 (Runx2) and core binding factor β subunit (CBF-β). Western blot was used to assess the protein expression of Runx2, phosphorylated Runx2 (p-Runx2), extracellular signal-regulated kinases 1/2 (ERK1/2), p-ERK1/2, p38 mitogen-activated protein kinase (MAPK), p-p38 MAPK, and CBF-β. ResultsCompared with the blank group, the MDA-MB-231 cell supernatant group showed a significant increase in TRAP-positive cell counts and Cathepsin K secretion. Meanwhile, the expression levels of p-Runx2, Runx2-CBF-β interaction, BSP and OCN mRNA, p-p38 MAPK, and p-ERK1/2 proteins were significantly decreased (P<0.01). Compared with the MDA-MB-231 cell supernatant group, Zuoguiwan-containing sera significantly reduced TRAP-positive cell counts and Cathepsin K secretion (P<0.01), significantly increased p-Runx2, BSP and OCN mRNA expression, as well as p-p38 MAPK and p-ERK1/2 protein levels, and promoted the interaction between Runx2 and CBF-β (P<0.01). No significant change in Runx2 expression was observed. Compared to the blank group, the BVD-523 group showed significantly lower expression of p-p38 MAPK and p-ERK1/2 proteins (P<0.01). Compared with the BVD-523 group, both low and high concentration Zuoguiwan-containing sera groups showed significantly higher p-p38 MAPK expression (P<0.01), and the high concentration Zuoguiwan group also exhibited a significant increase in p-ERK1/2 expression (P<0.01), while no statistical difference was found in the low-dose group. ConclusionZuoguiwan inhibits osteoclast activation by inducing phosphorylation of the key transcriptional regulator Runx2 in intra-osteoclast bone formation, and this process is closely associated with the activation of the p38 MAPK/ERK signaling pathway.
7.Effect of Yifei Jianpi Prescription on Lipopolysaccharide-induced Lung Immune Inflammatory Response in Rats Based on STAT1/IRF3 Pathway
Hongjuan YANG ; Yaru YANG ; Yujie YANG ; Zhongbo ZHU ; Quan MA ; Yanlin WU ; Hongmei LI ; Xuhui ZHANG ; Xiping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):146-155
ObjectiveTo observe the effect of Yifei Jianpi prescription on the of signal transducer and activator of transcription protein 1 (STAT1)/interferon regulatory factor 3 (IRF3) signaling pathway in a pneumonia model induced by lipopolysaccharide (LPS) and to explore the mechanism of Yifei Jianpi prescription in improving lung immune and inflammatory responses. MethodsSixty male SPF SD rats were used in this study. Ten rats were randomly assigned to the normal control group, and the remaining 50 were instilled with LPS in the trachea to establish a pneumonia model. After successful modeling, the rats were randomly divided into the model group, dexamethasone group (0.5 mg·kg-1), and Yifei Jianpi prescription high-dose (12 mg·kg-1), medium-dose (6 mg·kg-1), and low-dose (3 mg·kg-1) groups, with 10 rats in each group. Treatment was administered once daily, and the normal control and model groups received the same volume of normal saline. After 14 days, flow cytometry was used to detect the classification of whole blood lymphocytes. Enzyme-linked immunosorbent assay (ELISA) was used to measure serum levels of immunoglobulin G (IgG), immunoglobulin A (IgA), immunoglobulin M (IgM), and the content of tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), interleukin-6 (IL-6), and interleukin-10 (IL-10) in alveolar lavage fluid (BALF). Hematoxylin-eosin (HE) staining was used to observe lung tissue pathology and score the damage. Thymus weight, spleen weight, and wet-to-dry weight ratio (W/D) were recorded. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of STAT1, IRF3, IL-6, and interferon-alpha (IFN-α) in lung tissues, while Western blot was performed to assess the protein expression of STAT1, IRF3, IL-6, and IFN-α. ResultsCompared with the normal control group, the model group showed significantly increased proportion of B lymphocytes in peripheral blood, decreased proportions of NK cells and CD4+/CD8+ (P<0.05, P<0.01), decreased serum levels of IgG and IgA, significantly increased IgM levels (P<0.01), significantly elevated content of TNF-α, IL-6, and IL-8 in BALF, and significantly decreased IL-10 levels (P<0.01). Lung tissue damage was evident, with significant increases in thymus and spleen weights and a higher W/D ratio (P<0.01). The mRNA and protein expression of STAT1, IRF3, IFN-α, and IL-6 in lung tissues was significantly upregulated (P<0.05,P<0.01). Compared with the model group, the Yifei Jianpi prescription groups showed significantly reduced proportions of B lymphocytes in peripheral blood, increased proportions of NK cells and CD4+/CD8+ ratios (P<0.05, P<0.01), significantly increased serum levels of IgG and IgA, significantly decreased IgM levels (P<0.05, P<0.01), significantly reduced levels of TNF-α, IL-6, and IL-8 in BALF, and significantly increased IL-10 levels (P<0.01). Lung tissue damage was alleviated, thymus and spleen weights were significantly reduced, and the W/D ratio was markedly decreased (P<0.01). The mRNA and protein expression of STAT1, IRF3, IFN-α, and IL-6 in lung tissues was significantly downregulated (P<0.05, P<0.01). ConclusionYifei Jianpi prescription can alleviate lung tissue damage and improve immune and inflammatory responses in LPS-induced pneumonia rats. The mechanism may be related to the inhibition of STAT1/IRF3 signaling pathway activation.
8.Compound Xishu Granules Inhibit Proliferation of Hepatocellular Carcinoma Cells by Regulating Ferroptosis
Yuan TIAN ; Yuxi WANG ; Zhen LIU ; Yuncheng MA ; Hongyu ZHU ; Xiaozhu WANG ; Qian LI ; Jian GAO ; Weiling WANG ; Wenhui XU ; Ting WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):37-45
ObjectiveTo study the mechanism of compound Xishu granules (CXG) in inhibiting the proliferation of hepatocellular carcinoma cells by regulating ferroptosis. MethodsThe transplanted tumor model of human Huh7 was established with nude mice and the successfully modeled mice were randomized into model, Fufang Banmao (0.21 g·kg-1), low-dose (1.87 g·kg-1) CXG, medium-dose (3.74 g·kg-1) CXG, and high-dose (7.49 g·kg-1) CXG groups. Mice were administrated with drinking water or CXG for 28 days, and the body weight and tumor volume were measured every 4 days. Hematoxylin-eosin staining was employed to observe the histopathological changes of tumors. The cell-counting kit-8 (CCK-8) was used to examine the survival rate of Huh7 cells treated with different concentrations (0, 31.25, 62.5, 125, 250, 500, 1 000 mg·L-1) of CXG for 24 h and 48 h. CA-AM, DCFH-DA, and C11-BODIPY581/591 fluorescent probes were used to determine the intracellular levels of ferrous ion (Fe2+), reactive oxygen species (ROS), and lipid peroxide (LPO), respectively. The colorimetric method was employed to measure the levels of glutathione (GSH) and superoxide dismutase (SOD). Western blot was employed to determine the protein levels of glutathione peroxidase 4 (GPX4), transferrin receptor 1 (TFR1), and ferritin heavy chain 1 (FTH1), respectively. ResultsIn the animal experiment, compared with the model group, the drug treatment groups showed reductions in the tumor volume from day 12 (P<0.01). After treatment, the Fufang Banmao and low-, medium-, and high-dose CXG groups had lower tumor volume, relative tumor volume, and tumor weight than the model group (P<0.05), with tumor inhibition rates of 48.99%, 79.93%, 91.38%, and 97.36%, respectively. Moreover, the CXG groups had lower tumor volume and relative tumor volume (P<0.05 in all the three dose groups) and lower tumor weight (P<0.05 in medium-dose and high-dose groups) than the Fufang Banmao group. Compared with the model group, the drug treatment groups showed reduced number of tumor cells, necrotic foci with karyopyknosis, nuclear fragmentation, and nucleolysis, and the high-dose CXG group showed an increase in the proportion of interstitial fibroblasts. In the cell experiment, compared with the blank group, CXG reduced the survival rate of Huh7 cells in a dose-dependent manner after incubation for 24 h and 48 h (P<0.05). Compared with the blank group, the RSL3 group and the low-, medium-, and high-dose CXG groups showed a decrease in the relative fluorescence intensity of CA-AM and increases in the fluorescence intensity of DCFH-DA and fluorescence ratio of C11-BODIPY581/591, which indicated elevations in the levels of Fe2+ (P<0.01), ROS (P<0.05), and LPO (P<0.01), respectively. Compared with the blank group, the RSL3 and low-, medium-, and high-dose CXG groups showed lowered levels of GSH and SOD (P<0.05). In addition, the RSL3 group and the medium- and high-dose CXG groups showed down-regulated expression of GPX4 and FTH1 (P<0.05), and the low- and high-dose CXG groups presented up-regulated expression of TFR1 (P<0.05). ConclusionCXG suppresses the proliferation of hepatocellular carcinoma cells by inducing ferroptosis via downregulating the GSH-GPX4 signaling axis and increasing intracellular Fe2+and LPO levels.
9.Correlation Analysis Between Microbial Community Changes and Medicinal Quality Formation During Processing of Angelicae Dahuricae Radix
Xiaoyan CHEN ; Xinglong ZHU ; Qingxia GAN ; Jiahao WANG ; Guangqin AN ; Qinghua WU ; Jin PEI ; Yuntong MA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):198-207
ObjectiveTo compare the differences in color, odor, coumarin content and microbial community composition of Angelicae Dahuricae Radix(ADR) during different drying processes, and to explore the correlation between changes in microbial community composition and changes in quality indexes of ADR. MethodsThe fresh ADR was processed at three drying temperatures(50, 70, 100 ℃) by drying and steaming cutting, semi-fresh cutting and drying, fresh cutting and drying, and sulfur fumigation methods. The color values of samples were extracted by Adobe Photoshop 2022 software and subjected to principal component analysis(PCA), electronic nose was used to identify the odor information of medicinal powders and subjected to loadings analysis, PCA, and linear discriminant analysis(LDA), and high performance liquid chromatography(HPLC) was used to determine the contents of five coumarins(bergapten, oxypeucedanin, imperatorin, phellopterin, isoimperatorin). The samples for microbial detection were taken from fresh dried samples, 50 ℃(dried and steamed cut, sulfur fumigated) samples, and 100 ℃(dried and steamed cut) samples when the water content was 50% and 14%, respectively. And the changes of microbial community composition during processing were determined by high-throughput sequencing method. The relationship between the changes of microbial community composition and the changes of odor, color and active component content of ADR during drying process was analyzed by Pearson correlation analysis. ResultsThe color quantification results showed that an increase in drying temperature led to the decrease of brightness value(L), and the increases of red-green value(a) and yellow-blue value(b), and the change of processing method had no obvious effect on the color of medicinal materials. The results of odor quantification showed that W1S, W2S, W5S, W2W and W1W sensor were sensitive to the odor changes of ADR and could be used to distinguish ADR decoction pieces from different processing methods. The results of HPLC showed that the coumarin content of ADR decreased with the increase of drying temperature and the delay of processing time, the optimal processing method was drying and steaming cutting method, and the optimal temperature was 50 ℃. High-throughput sequencing results showed that the dominant bacteria in ADR during processing were Achromobacter, Agrobacterium, Nocardioides, Mycobacterium and Enterobacter, the dominant fungi were Coprinopsis, Meyerozyma and Apiotrichum. The results of correlation analysis showed that the quality indexes of ADR were positively correlated with Agrobacterium, Mycobacterium in bacteria, Candida in fungi, and negatively correlated with Bacillus in bacteria. ConclusionThere are significant differences in the color, odor, coumarin content and microbial community composition of ADR in different drying processes, and the best drying method is drying and steaming cutting at 50 ℃. The relative abundance changes of 9 bacterial genera and 4 fungal genera are closely related to the quality formation of ADR during the drying process.
10.Overview of the amendments and revisions to the General Technical Requirements adopted by the Volume Ⅳ of the Chinese Pharmacopoeia 2025 Edition
ZHANG Jun ; NING Baoming ; WEI Shifeng ; SHEN Haoyu ; SHANG Yue ; ZHU Ran ; XU Xinyi ; CHEN Lei ; LIU Tingting ; MA Shuangcheng
Drug Standards of China 2025;26(1):034-044
To introduce the general thinking, guidelines, work objectives and elaboration process of the general technical requirements adopted by volume Ⅳ of the Chinese Pharmacopoeia 2025 Edition, and to summarize and figure out the main characteristics on dosage forms, physico-chemical testing, microbial and biological testing, reference standards and guidelines The newly revised general chapters of pharmacopoeia give full play to the normative and guiding role of the Chinese Pharmacopoeia standard, track the frontier dynamics of international drug regulatory science and the elaboration of monographs, expand the application of state-of-the-art technologies, and steadily promote the harmonization and unification with the ICH guidelines; further enhance the overall capacity of TCM quality control, actively implement the 3 R principles on animal experiments, and practice the concept of environmental-friendly; replace and/or reduce the use of toxic and hazardous reagents, strengthen the requirements of drug safety control This paper aims to provide a full-view perspective for the comprehensive, correct understanding and accurate implementation of general technical requirements included in the Chinese Pharmacopoeia 2025 Edition.

Result Analysis
Print
Save
E-mail