1.Effects of Rehmanniae Radix Praeparata on striatal neuronal apoptosis in ADHD rats via Bcl-2/Bax/caspase-3 pathway.
Jing WANG ; Kang-Lin ZHU ; Xin-Qiang NI ; Wen-Hua CAI ; Yu-Ting YANG ; Jia-Qi ZHANG ; Chong ZHOU ; Mei-Jun SHI
China Journal of Chinese Materia Medica 2025;50(3):750-757
This study investigated the effects of Rehmanniae Radix Praeparata on striatal neuronal apoptosis in rats with attention deficit hyperactivity disorder(ADHD) based on the B-cell lymphoma-2(Bcl-2)/Bcl-2-associated X protein(Bax)/caspase-3 signaling pathway. Twenty-four 3-week-old male spontaneously hypertensive rats(SHR) were randomly divided into a model group, a methylphenidate group(2 mg·kg~(-1)·d~(-1)), and a Rehmanniae Radix Praeparata group(2.4 mg·kg~(-1)·d~(-1)). Age-matched male Wistar Kyoto(WKY) rats were used as the normal control group, with 8 rats in each group. The rats were administered by gavage for 28 days. Body weight and food intake were recorded for each group. The open field test and elevated plus maze test were used to assess hyperactivity and impulsive behaviors. Nissl staining was used to detect changes in striatal neurons and Nissl bodies. Terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) fluorescence staining was used to detect striatal cell apoptosis. Western blot was employed to detect the expression levels of Bcl-2, Bax, and caspase-3 proteins in the striatum. The results showed that compared with the model group, Rehmanniae Radix Praeparata significantly reduced the total movement distance, average movement speed, and central area residence time in the open field test, and significantly reduced the ratio of open arm entries, open arm stay time, and head dipping in the elevated plus maze test. Furthermore, it increased the number of Nissl bodies in striatal neurons, significantly downregulated the apoptosis index, significantly increased Bcl-2 protein expression and the Bcl-2/Bax ratio, and reduced Bax and caspase-3 protein expression. In conclusion, Rehmanniae Radix Praeparata can reduce hyperactivity and impulsive behaviors in ADHD rats. Its mechanism may be related to the regulation of the Bcl-2/Bax/caspase-3 signaling pathway in the striatum, enhancing the anti-apoptotic capacity of striatal neurons.
Animals
;
Male
;
Apoptosis/drug effects*
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Caspase 3/genetics*
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
bcl-2-Associated X Protein/genetics*
;
Rehmannia/chemistry*
;
Attention Deficit Disorder with Hyperactivity/physiopathology*
;
Signal Transduction/drug effects*
;
Neurons/cytology*
;
Rats, Inbred SHR
;
Rats, Inbred WKY
;
Humans
;
Corpus Striatum/cytology*
;
Plant Extracts
2.Research progress in pharmacological effects of puerarin.
Xiao-Wei MENG ; Feng-Mei GUO ; Qian-Qian WANG ; Jia-Rong LI ; Ni ZHANG ; Fei QU ; Rong-Hua LIU ; Wei-Feng ZHU
China Journal of Chinese Materia Medica 2025;50(11):2954-2968
Traditional Chinese medicine(TCM), a treasure of the Chinese nation, contains abundant chemical components and demonstrates unique pharmacological activities, showing important values in clinical applications. With profound connotations and broad application prospects, TCM urgently needs us to further explore and conduct systematic research. Puerarin is a small-molecule natural isoflavonoid carbon glycoside extracted from plants of Pueraria. It is also the main active ingredient of Puerariae Lobata Radix, a Chinese herbal medicine with both medicinal and edible values. Puerarin has a variety of pharmacological effects such as blood pressure-lowering, anti-atherosclerosis, anti-ischemia-reperfusion injury, antithrombotic, anti-tumor, anti-inflammatory, liver-protecting, nerve cell-protecting, and intestinal microbiota-regulating effects. It is also an active ingredient that has been widely studied. This article comprehensively reviews the research progress in the pharmacological effects and molecular mechanisms of puerarin over the years, aiming to provide references and theoretical support for the in-depth research and development as well as clinical application of puerarin.
Isoflavones/chemistry*
;
Humans
;
Animals
;
Drugs, Chinese Herbal/chemistry*
;
Pueraria/chemistry*
3.A preclinical evaluation and first-in-man case for transcatheter edge-to-edge mitral valve repair using PulveClip® transcatheter repair device.
Gang-Jun ZONG ; Jie-Wen DENG ; Ke-Yu CHEN ; Hua WANG ; Fei-Fei DONG ; Xing-Hua SHAN ; Jia-Feng WANG ; Ni ZHU ; Fei LUO ; Peng-Fei DAI ; Zhi-Fu GUO ; Yong-Wen QIN ; Yuan BAI
Journal of Geriatric Cardiology 2025;22(2):265-269
4.Generalized Functional Linear Models: Efficient Modeling for High-dimensional Correlated Mixture Exposures.
Bing Song ZHANG ; Hai Bin YU ; Xin PENG ; Hai Yi YAN ; Si Ran LI ; Shutong LUO ; Hui Zi WEIREN ; Zhu Jiang ZHOU ; Ya Lin KUANG ; Yi Huan ZHENG ; Chu Lan OU ; Lin Hua LIU ; Yuehua HU ; Jin Dong NI
Biomedical and Environmental Sciences 2025;38(8):961-976
OBJECTIVE:
Humans are exposed to complex mixtures of environmental chemicals and other factors that can affect their health. Analysis of these mixture exposures presents several key challenges for environmental epidemiology and risk assessment, including high dimensionality, correlated exposure, and subtle individual effects.
METHODS:
We proposed a novel statistical approach, the generalized functional linear model (GFLM), to analyze the health effects of exposure mixtures. GFLM treats the effect of mixture exposures as a smooth function by reordering exposures based on specific mechanisms and capturing internal correlations to provide a meaningful estimation and interpretation. The robustness and efficiency was evaluated under various scenarios through extensive simulation studies.
RESULTS:
We applied the GFLM to two datasets from the National Health and Nutrition Examination Survey (NHANES). In the first application, we examined the effects of 37 nutrients on BMI (2011-2016 cycles). The GFLM identified a significant mixture effect, with fiber and fat emerging as the nutrients with the greatest negative and positive effects on BMI, respectively. For the second application, we investigated the association between four pre- and perfluoroalkyl substances (PFAS) and gout risk (2007-2018 cycles). Unlike traditional methods, the GFLM indicated no significant association, demonstrating its robustness to multicollinearity.
CONCLUSION
GFLM framework is a powerful tool for mixture exposure analysis, offering improved handling of correlated exposures and interpretable results. It demonstrates robust performance across various scenarios and real-world applications, advancing our understanding of complex environmental exposures and their health impacts on environmental epidemiology and toxicology.
Humans
;
Environmental Exposure/analysis*
;
Linear Models
;
Nutrition Surveys
;
Environmental Pollutants
;
Body Mass Index
5.A real-world study of first-line albumin-bound paclitaxel in the treatment of advanced pancreatic cancer in China
Juan DU ; Xin QIU ; Jiayao NI ; Qiaoli WANG ; Fan TONG ; Huizi SHA ; Yahui ZHU ; Liang QI ; Wei CAI ; Chao GAO ; Xiaowei WEI ; Minbin CHEN ; Zhuyin QIAN ; Maohuai CAI ; Min TAO ; Cailian WANG ; Guocan ZHENG ; Hua JIANG ; Anwei DAI ; Jun WU ; Minghong ZHAO ; Xiaoqin LI ; Bin LU ; Chunbin WANG ; Baorui LIU
Chinese Journal of Oncology 2024;46(11):1038-1048
Objective:To observe and evaluate the clinical efficacy and safety of albumin-bound paclitaxel as first-line treatment for patients with advanced pancreatic cancer in China, and to explore the prognosis-related molecules in pancreatic cancer based on next-generation sequencing (NGS) of tumor tissues.Methods:From December 2018 to December 2020, patients with locally advanced or metastatic pancreatic cancer were recruited to accept albumin-bound paclitaxel as first-line treatment in the oncology departments of 24 hospitals in East China. The primary endpoints were overall survival (OS) and treatment related adverse events, and the secondary endpoint was progression-free survival (PFS). Adverse effects were graded using Common Terminology Criteria for Adverse Events 5.0 (CTCAE 5.0). NGS sequencing on the primary or metastatic tissue samples of pancreatic cancer obtained through surgical resection or biopsy was performed.Results:This study recruited 229 patients, including 70 patients with locally advanced pancreatic cancer (LAPC) and 159 patients with metastatic pancreatic cancer (mPC). The disease control rate was 79.9% and the objective response rate is 36.3%.The common adverse effects during treatment were anaemia (159 cases), leucopenia (170 cases), neutropenia (169 cases), increased aminotransferases (110 cases), and thrombocytopenia (95 cases), and the incidence of grade 3-4 neutropenia is 12.2% (28/229). The median follow-up time was 21.2 months (95% CI: 18.5-23.1 months). The median PFS (mPFS) was 5.3 months (95% CI: 4.37-4.07 months) and the median OS (mOS) was 11.2 months (95% CI: 9.5-12.9 months). The mPFS of patients with LAPC was 7.4 months (95% CI: 6.6-11.2 months), and their mOS was 15.5 months (95% CI: 12.6-NA months). The mPFS of patients with mPC was 3.9 months (95% CI: 3.4-5.1 months), and their mOS was 9.3 months (95% CI: 8.0-10.8 months). Multivariate Cox regression analysis showed that clinical stage ( HR=1.47, 95% CI: 1.06-2.04), primary tumor site ( HR=0.64, 95% CI: 0.48-0.86), Eastern Cooperative Oncology Group Performance Status (ECOG PS) score ( HR=2.66, 95% CI: 1.53-4.65), and whether to combine radiotherapy ( HR=0.65, 95% CI: 0.42-1.00) were independent influencing factors for the PFS of these patients. The primary tumor site ( HR=0.68, 95% CI: 0.48-0.95), ECOG score ( HR=5.82, 95% CI: 3.14-10.82), and whether to combine radiotherapy ( HR=0.58, 95% CI: 0.35-0.96) were independent influencing factors of the OS of these patients. The most frequent gene mutations in these advanced stage pancreatic patients were KRAS (89.66%), TP53 (77.01%), CDKN2A (32.18%), and SMAD4 (21.84%) by NGS of tumor tissues from 87 pancreatic cancer patients with sufficient specimens. Further analysis revealed that mutations in CDKN2B, PTEN, FGF6, and RBBP8 genes were significantly associated with an increased risk of death ( P<0.05). Conclusion:Albumin-bound paclitaxel as first-line treatment demonstrated feasible anti-tumor efficacy and manageable safety for patients with advanced pancreatic cancer in China.
6.A real-world study of first-line albumin-bound paclitaxel in the treatment of advanced pancreatic cancer in China
Juan DU ; Xin QIU ; Jiayao NI ; Qiaoli WANG ; Fan TONG ; Huizi SHA ; Yahui ZHU ; Liang QI ; Wei CAI ; Chao GAO ; Xiaowei WEI ; Minbin CHEN ; Zhuyin QIAN ; Maohuai CAI ; Min TAO ; Cailian WANG ; Guocan ZHENG ; Hua JIANG ; Anwei DAI ; Jun WU ; Minghong ZHAO ; Xiaoqin LI ; Bin LU ; Chunbin WANG ; Baorui LIU
Chinese Journal of Oncology 2024;46(11):1038-1048
Objective:To observe and evaluate the clinical efficacy and safety of albumin-bound paclitaxel as first-line treatment for patients with advanced pancreatic cancer in China, and to explore the prognosis-related molecules in pancreatic cancer based on next-generation sequencing (NGS) of tumor tissues.Methods:From December 2018 to December 2020, patients with locally advanced or metastatic pancreatic cancer were recruited to accept albumin-bound paclitaxel as first-line treatment in the oncology departments of 24 hospitals in East China. The primary endpoints were overall survival (OS) and treatment related adverse events, and the secondary endpoint was progression-free survival (PFS). Adverse effects were graded using Common Terminology Criteria for Adverse Events 5.0 (CTCAE 5.0). NGS sequencing on the primary or metastatic tissue samples of pancreatic cancer obtained through surgical resection or biopsy was performed.Results:This study recruited 229 patients, including 70 patients with locally advanced pancreatic cancer (LAPC) and 159 patients with metastatic pancreatic cancer (mPC). The disease control rate was 79.9% and the objective response rate is 36.3%.The common adverse effects during treatment were anaemia (159 cases), leucopenia (170 cases), neutropenia (169 cases), increased aminotransferases (110 cases), and thrombocytopenia (95 cases), and the incidence of grade 3-4 neutropenia is 12.2% (28/229). The median follow-up time was 21.2 months (95% CI: 18.5-23.1 months). The median PFS (mPFS) was 5.3 months (95% CI: 4.37-4.07 months) and the median OS (mOS) was 11.2 months (95% CI: 9.5-12.9 months). The mPFS of patients with LAPC was 7.4 months (95% CI: 6.6-11.2 months), and their mOS was 15.5 months (95% CI: 12.6-NA months). The mPFS of patients with mPC was 3.9 months (95% CI: 3.4-5.1 months), and their mOS was 9.3 months (95% CI: 8.0-10.8 months). Multivariate Cox regression analysis showed that clinical stage ( HR=1.47, 95% CI: 1.06-2.04), primary tumor site ( HR=0.64, 95% CI: 0.48-0.86), Eastern Cooperative Oncology Group Performance Status (ECOG PS) score ( HR=2.66, 95% CI: 1.53-4.65), and whether to combine radiotherapy ( HR=0.65, 95% CI: 0.42-1.00) were independent influencing factors for the PFS of these patients. The primary tumor site ( HR=0.68, 95% CI: 0.48-0.95), ECOG score ( HR=5.82, 95% CI: 3.14-10.82), and whether to combine radiotherapy ( HR=0.58, 95% CI: 0.35-0.96) were independent influencing factors of the OS of these patients. The most frequent gene mutations in these advanced stage pancreatic patients were KRAS (89.66%), TP53 (77.01%), CDKN2A (32.18%), and SMAD4 (21.84%) by NGS of tumor tissues from 87 pancreatic cancer patients with sufficient specimens. Further analysis revealed that mutations in CDKN2B, PTEN, FGF6, and RBBP8 genes were significantly associated with an increased risk of death ( P<0.05). Conclusion:Albumin-bound paclitaxel as first-line treatment demonstrated feasible anti-tumor efficacy and manageable safety for patients with advanced pancreatic cancer in China.
7.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.

Result Analysis
Print
Save
E-mail