1.Current Status of Traditional Chinese Medicine Diagnosis and Treatment of Inflammatory Bowel Disease and the Research on Mechanism
Junxiang LI ; Hong SHEN ; Tangyou MAO ; Lei ZHU ; Jiaqi ZHANG ; Zhibin WANG ; Xudong TANG
Journal of Traditional Chinese Medicine 2026;67(1):103-110
In recent years, traditional Chinese medicine (TCM) has achieved significant progress in the treatment of inflammatory bowel disease (IBD). A comprehensive literature search was conducted covering the period from January 1, 2010, to December 30, 2024, across Chinese databases including China National Knowledge Infrastructure (CNKI), Wanfang Data, VIP China Science and Technology Journal Database, and the Chinese Biomedical Literature Service System, as well as international databases such as PubMed, Web of Science, and Embase. The clinical applications and mechanistic studies of TCM in IBD were systematically reviewed. The current status of TCM research on the etiology and pathogenesis of IBD, innovative clinical practices, and multimodal therapeutic approaches, including Chinese herbal formulas, single herbs or active compounds, acupuncture, herbal retention enema, and acupoint application, were summarized, together with their synergistic effects when combined with western medical treatments. The development and application of Chinese patent medicines for IBD are undergoing a profound transition from efficacy validation to mechanistic exploration. Mechanistic studies on the effects of TCM in IBD mainly focus on regulating gut microbiota homeostasis, repairing the intestinal mucosal barrier, and modulating intestinal immune balance. Furthermore, future research directions for TCM-based IBD management are proposed, including the establishment of TCM diagnostic and treatment models, expanding integrated applications of external and internal TCM therapies, innovating personalized treatment strategies, and advancing drug development. These efforts aim to provide insights for the standardized and precision-oriented development of TCM in the diagnosis and treatment of IBD.
2.Changes and Trends in the microbiological-related standards in the Chinese Pharmacopoeia 2025 Edition
FAN Yiling ; ZHU Ran ; YANG Yan ; JIANG Bo ; SONG Minghui ; WANG Jing ; LI Qiongqiong ; LI Gaomin ; WANG Shujuan ; SHAO Hong ; MA Shihong ; CAO Xiaoyun ; HU Changqin ; MA Shuangcheng, ; YANG Meicheng
Drug Standards of China 2025;26(1):093-098
Objective: To systematically analyze the revisions content and technological development trends of microbiological standards in the Chinese Pharmacopoeia (ChP) 2025 Edition, and explore its novel requirements in risk-based pharmaceutical product lifecycle management.
Methods: A comprehensive review was conducted on 26 microbiological-related standards to summarize the revision directions and scientific implications from perspectives including the revision overview, international harmonization of microbiological standards, risk-based quality management system, and novel tools and methods with Chinese characteristics.
Results: The ChP 2025 edition demonstrates three prominent features in microbiological-related standards: enhanced international harmonization, introduced emerging molecular biological technologies, and established a risk-based microbiological quality control system.
Conclusion: The new edition of the Pharmacopoeia has systematically constructed a microbiological standard system, which significantly improves the scientificity, standardization and applicability of the standards, providing a crucial support for advancing the microbiological quality control in pharmaceutical industries of China.
3.Inhibition of HDAC3 Promotes Psoriasis Development in Mice Through Regulating Th17
Fan XU ; Xin-Rui ZHANG ; Yang-Chen XIA ; Wen-Ting LI ; Hao CHEN ; An-Qi QIN ; Ai-Hong ZHANG ; Yi-Ran ZHU ; Feng TIAN ; Quan-Hui ZHENG
Progress in Biochemistry and Biophysics 2025;52(4):1008-1017
ObjectiveTo investigate the influence of histone deacetylase 3 (HDAC3) on the occurrence, development of psoriasis-like inflammation in mice, and the relative immune mechanisms. MethodsHealthy C57BL/6 mice aged 6-8 weeks were selected and randomly divided into 3 groups: control group (Control), psoriasis model group (IMQ), and HDAC3 inhibitor RGFP966-treated psoriasis model group (IMQ+RGFP966). One day prior to the experiment, the back hair of the mice was shaved. After a one-day stabilization period, the mice in Control group was treated with an equal amount of vaseline, while the mice in IMQ group was treated with imiquimod (62.5 mg/d) applied topically on the back to establish a psoriasis-like inflammation model. The mice in IMQ+RGFP966 group received intervention with a high dose of the HDAC3-selective inhibitor RGFP966 (30 mg/kg) based on the psoriasis-like model. All groups were treated continuously for 5 d, during which psoriasis-like inflammation symptoms (scaling, erythema, skin thickness), body weight, and mental status were observed and recorded, with photographs taken for documentation. After euthanasia, hematoxylin-eosin (HE) staining was used to assess the effect of RGFP966 on the skin tissue structure of the mice, and skin thickness was measured. The mRNA and protein expression levels of HDAC3 in skin tissues were detected using reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB), respectively. Flow cytometry was employed to analyze neutrophils in peripheral blood and lymph nodes, CD4+ T lymphocytes, CD8+ T lymphocytes in peripheral blood, and IL-17A secretion by peripheral blood CD4+ T lymphocytes. Additionally, spleen CD4+ T lymphocyte expression of HDAC3, CCR6, CCR8, and IL-17A secretion levels were analyzed. Immunohistochemistry was used to detect the localization and expression levels of HDAC3, IL-17A, and IL-10 in skin tissues. ResultsCompared with the Control group, the IMQ group exhibited significant psoriasis-like inflammation, characterized by erythema, scaling, and skin wrinkling. Compared with the IMQ group, RGFP966 exacerbated psoriasis-like inflammatory symptoms, leading to increased hyperkeratosis. The psoriasis area and severity index (PASI) skin symptom scores were higher in the IMQ group than those in the Control group, and the scores were further elevated in the IMQ+RGFP966 group compared to the IMQ group. Skin thickness measurements showed a trend of IMQ+RGFP966>IMQ>Control. The numbers of neutrophils in the blood and lymph nodes increased sequentially in the Control, IMQ, and IMQ+RGFP966 groups, with a similar trend observed for CD4+ and CD8+ T lymphocytes in the blood. In skin tissues, compared with the Control group, the mRNA and protein levels of HDAC3 decreased in the IMQ group, but RGFP966 did not further reduce these expressions. HDAC3 was primarily located in the nucleus. Compared with the Control group, the nuclear HDAC3 content decreased in the skin tissues of the IMQ group, and RGFP966 further reduced nuclear HDAC3. Compared with the Control and IMQ groups, RGFP966 treatment decreased HDAC3 expression in splenic CD4+ and CD8+ T cells. RGFP966 treatment increased the expression of CCR6 and CCR8 in splenic CD4+ T cells and enhanced IL-17A secretion by peripheral blood and splenic CD4+ T lymphocytes. Additionally, compared with the IMQ group, RGFP966 reduced IL-10 protein levels and upregulated IL-17A expression in skin tissues. ConclusionRGFP966 exacerbates psoriatic-like inflammatory responses by inhibiting HDAC3, increasing the secretion of the cytokine IL-17A, and upregulating the expression of chemokines CCR8 and CCR6.
4.Overexpression of Ptpn2 inhibits SiO2-mediated inflammatory response in alveolar type II epithelial cells
Mengfei FENG ; Yi WEI ; Xinru SUN ; Jingshuo GONG ; Xuemin GAO ; Hong XU ; Ying ZHU
Journal of Environmental and Occupational Medicine 2025;42(4):482-489
Background Protein tyrosine phosphatase non-receptor type II (PTPN2) is essential for the regulation of inflammation and immunity, but the specific mechanism of action of Ptpn2 in silicosis is unknown. Objective To investigate the regulatory role of overexpression of Ptpn2 in SiO2-mediated inflammatory response in alveolar type II epithelial cells based on transcriptome sequencing. Methods This study was an in vitro study. A negative control group (vector transferred) and an overexpression of Ptpn2 group of mouse lung epithelial cell line MLE-12 cells were firstly constructed. Transcriptome sequencing was performed to detect differentially expressed genes (DEGs), differentially expressed mRNAs, and differentially expressed ncRNAs in the two groups of MLE-12 cells, and then the DEGs were analyzed by the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Constructed MLE-12 cells and A549 cells were stimulated using SiO2 suspension, and divided into a negative control group (vector transferred), an overexpression of Ptpn2 group, a negative control + SiO2 group, and an overexpression of Ptpn2 + SiO2 group, respectively. Protein expressions of tumor necrosis factor-α (TNF-α) and interleukin (IL)-17A, IL-2, IL-1β were detected by Western blot. Positive TNF-α expression was detected by immunofluorescence staining. Results The results of Western blot showed that the protein expression level of PTPN2 was up-regulated in the overexpressed Ptpn2 group compared with the negative control group (P < 0.05). The volcano plot and clustering heat map showed that there were
5.Mechanism of Zuoguiwan in Inhibiting Osteoclast Activation Induced by Breast Cancer via Regulating p38 MAPK/ERK Signaling Pathway
Jianjiang FU ; Yinlong MEI ; Junchao MA ; Xiaocui ZHU ; Wei WANG ; Hong LYU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):1-9
ObjectiveTo investigate the effects of Zuoguiwan on osteoclast activation induced by breast cancer and its mechanism. MethodsTo simulate breast cancer-induced osteoclastic bone metastasis, RAW264.7 cells were cultured in conditioned medium containing 50% supernatant of MDA-MB-231 breast cancer cells. The dosages of Zuoguiwan used in the experiment were sera containing 5% and 10% Zuoguiwan. Tartrate-resistant acid phosphatase (TRAP) staining was used to detect osteoclast activation. Enzyme-linked immunosorbent assay (ELISA) was used to measure Cathepsin K secretion from RAW264.7 cells. Real-time quantitative polymerase chain reaction (PCR) was used to detect the mRNA expression levels of osteocalcin (OCN) and bone sialoprotein (BSP). Immunoprecipitation was employed to detect the interaction between Runt-related transcription factor 2 (Runx2) and core binding factor β subunit (CBF-β). Western blot was used to assess the protein expression of Runx2, phosphorylated Runx2 (p-Runx2), extracellular signal-regulated kinases 1/2 (ERK1/2), p-ERK1/2, p38 mitogen-activated protein kinase (MAPK), p-p38 MAPK, and CBF-β. ResultsCompared with the blank group, the MDA-MB-231 cell supernatant group showed a significant increase in TRAP-positive cell counts and Cathepsin K secretion. Meanwhile, the expression levels of p-Runx2, Runx2-CBF-β interaction, BSP and OCN mRNA, p-p38 MAPK, and p-ERK1/2 proteins were significantly decreased (P<0.01). Compared with the MDA-MB-231 cell supernatant group, Zuoguiwan-containing sera significantly reduced TRAP-positive cell counts and Cathepsin K secretion (P<0.01), significantly increased p-Runx2, BSP and OCN mRNA expression, as well as p-p38 MAPK and p-ERK1/2 protein levels, and promoted the interaction between Runx2 and CBF-β (P<0.01). No significant change in Runx2 expression was observed. Compared to the blank group, the BVD-523 group showed significantly lower expression of p-p38 MAPK and p-ERK1/2 proteins (P<0.01). Compared with the BVD-523 group, both low and high concentration Zuoguiwan-containing sera groups showed significantly higher p-p38 MAPK expression (P<0.01), and the high concentration Zuoguiwan group also exhibited a significant increase in p-ERK1/2 expression (P<0.01), while no statistical difference was found in the low-dose group. ConclusionZuoguiwan inhibits osteoclast activation by inducing phosphorylation of the key transcriptional regulator Runx2 in intra-osteoclast bone formation, and this process is closely associated with the activation of the p38 MAPK/ERK signaling pathway.
6.Hypolipidemic effect and mechanism of Arisaema Cum Bile based on gut microbiota and metabolomics.
Peng ZHANG ; Fa-Zhi SU ; En-Lin ZHU ; Chen-Xi BAI ; Bao-Wu ZHANG ; Yan-Ping SUN ; Hai-Xue KUANG ; Qiu-Hong WANG
China Journal of Chinese Materia Medica 2025;50(6):1544-1557
Based on the high-fat diet-induced hyperlipidemia rat model, this study aimed to evaluate the lipid-lowering effect of Arisaema Cum Bile and explore its mechanisms, providing experimental evidence for its clinical application. Biochemical analysis was used to detect serum levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), triglycerides(TG), and total cholesterol(TC) to assess the lipid-lowering activity of Arisaema Cum Bile. Additionally, 16S rDNA sequencing and metabolomics techniques were employed to jointly elucidate the lipid-lowering mechanisms of Arisaema Cum Bile. The experimental results showed that high-dose Arisaema Cum Bile(PBA-H) significantly reduced serum ALT, AST, LDL-C, TG, and TC levels(P<0.01), and significantly increased HDL-C levels(P<0.01). The effect was similar to that of fenofibrate, with no significant difference. Furthermore, Arisaema Cum Bile significantly alleviated hepatocyte ballooning and mitigated fatty degeneration in liver tissues. As indicated by 16S rDNA sequencing results, PBA-H significantly enhanced both alpha and beta diversity of the gut microbiota in the model rats, notably increasing the relative abundance of Akkermansia and Subdoligranulum species(P<0.01). Liver metabolomics analysis revealed that PBA-H primarily regulated pathways involved in arachidonic acid metabolism, vitamin B_6 metabolism, and steroid biosynthesis. In summary, Arisaema Cum Bile significantly improved abnormal blood lipid levels and liver pathology induced by a high-fat diet, regulated hepatic metabolic disorders, and improved the abundance and structural composition of gut microbiota, thereby exerting its lipid-lowering effect. The findings of this study provide experimental evidence for the clinical application of Arisaema Cum Bile and the treatment of hyperlipidemia.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Rats
;
Male
;
Metabolomics
;
Hyperlipidemias/microbiology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Hypolipidemic Agents/pharmacology*
;
Liver/metabolism*
;
Humans
;
Alanine Transaminase/metabolism*
;
Triglycerides/metabolism*
;
Aspartate Aminotransferases/metabolism*
7.Color-component correlation and mechanism of component transformation of processed Citri Reticulatae Semen.
Kui-Lin ZHU ; Jin-Lian ZOU ; Xu-Li DENG ; Mao-Xin DENG ; Hai-Ming WANG ; Rui YIN ; Zhang-Xian CHEN ; Yun-Tao ZHANG ; Hong-Ping HE ; Fa-Wu DONG
China Journal of Chinese Materia Medica 2025;50(9):2382-2390
High-performance liquid chromatography(HPLC) was used to determine the content of three major components in Citri Reticulatae Semen(CRS), including limonin, nomilin, and obacunone. The chromaticity of the CRS sample during salt processing and stir-frying was measured using a color difference meter. Next, the relationship between the color and content of the salt-processed CRS sample was investigated through correlation analysis. By integrating the oil bath technique for processing simulation with HPLC, the changes in the relative content of nomilin and its transformation products were analyzed, with its structural transformation pattern during processing identified. Additionally, RAW264.7 cells were induced with lipopolysaccharides(LPSs) to establish an inflammatory model, and the anti-inflammatory activity of nomilin and its transformation product, namely obacunone was evaluated. The results indicated that as processing progressed, E~*ab and L~* values showed a downward trend; a~* values exhibited a slow increase over a certain period, followed by no significant changes, and b~* values remained stable with no significant changes over a certain period and then started to decrease. The limonin content remained barely unchanged; the nomilin content decreased, and the obacunone increased significantly. The changing trends in content and color parameters during salt-processing and stir-frying were basically consistent. The content of nomilin and obacunone was significantly correlated with the colorimetric values(L~*, a~*, b~*, and E~*ab), while limonin content showed no significant correlation with these values. By analyzing HPLC patterns of nomylin at different heating temperatures and time, it was found that under conditions of 200-250 ℃ for heating of 5-60 min, the content of nomilin significantly decreased, while the obacunone content increased pronouncedly. The in vitro anti-inflammatory activity results indicated that compared to the model group, the group with a high concentration of nomilin and the groups with varying concentrations of obacunone showed significantly reduced release of nitric oxide(NO)(P<0.01). When both were at the same concentration, obacunone showed better performance in inhibiting NO release. In this study, the obvious correlation between the color and content of major components during the processing of CRS samples was identified, and the dynamic patterns of quality change in CRS samples during processing were revealed. Additionally, the study revealed and confirmed the transformation of nomilin into obacunone during processing, with the in vitro anti-inflammatory activity of obacunone significantly greater than that of nomilin. These findings provided a scientific basis for CRS processing optimization, tablet quality control, and its clinical application.
Mice
;
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
RAW 264.7 Cells
;
Limonins/chemistry*
;
Chromatography, High Pressure Liquid
;
Citrus/chemistry*
;
Color
;
Benzoxepins/chemistry*
;
Anti-Inflammatory Agents/chemistry*
8.Mechanism of vanillic acid against cardiac fibrosis induced by isoproterenol in mice based on Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways.
Hai-Bo HE ; Mian WU ; Jie XU ; Qian-Qian XU ; Fang-Zhu WAN ; Hua-Qiao ZHONG ; Ji-Hong ZHANG ; Gang ZHOU ; Hui-Lin QIN ; Hao-Ran LI ; Hai-Ming TANG
China Journal of Chinese Materia Medica 2025;50(8):2193-2208
This study investigated the effects and underlying mechanisms of vanillic acid(VA) against cardiac fibrosis(CF) induced by isoproterenol(ISO) in mice. Male C57BL/6J mice were randomly divided into control group, VA group(100 mg·kg~(-1), ig), ISO group(10 mg·kg~(-1), sc), ISO + VA group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig), ISO + dynamin-related protein 1(Drp1) inhibitor(Mdivi-1) group(10 mg·kg~(-1), sc + 50 mg·kg~(-1), ip), and ISO + VA + Mdivi-1 group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig + 50 mg·kg~(-1), ip). The treatment groups received the corresponding medications once daily for 14 consecutive days. On the day after the last administration, cardiac functions were evaluated, and serum and cardiac tissue samples were collected. These samples were analyzed for serum aspartate aminotransferase(AST), lactate dehydrogenase(LDH), creatine kinase-MB(CK-MB), cardiac troponin I(cTnI), reactive oxygen species(ROS), interleukin(IL)-1β, IL-4, IL-6, IL-10, IL-18, and tumor necrosis factor-α(TNF-α) levels, as well as cardiac tissue catalase(CAT), glutathione(GSH), malondialdehyde(MDA), myeloperoxidase(MPO), superoxide dismutase(SOD), total antioxidant capacity(T-AOC) activities, and cytochrome C levels in mitochondria and cytoplasm. Hematoxylin-eosin, Masson, uranium acetate and lead citrate staining were used to observe morphological and mitochondrial ultrastructural changes in the cardiac tissues, and myocardial injury area and collagen volume fraction were calculated. Flow cytometry was applied to detect the relative content and M1/M2 polarization of cardiac macrophages. The mRNA expression levels of macrophage polarization markers [CD86, CD206, arginase 1(Arg-1), inducible nitric oxide synthase(iNOS)], CF markers [type Ⅰ collagen(Coll Ⅰ), Coll Ⅲ, α-smooth muscle actin(α-SMA)], and cytokines(IL-1β, IL-4, IL-6, IL-10, IL-18, TNF-α) in cardiac tissues were determined by quantitative real-time PCR. Western blot was used to detect the protein expression levels of Coll Ⅰ, Coll Ⅲ, α-SMA, Drp1, p-Drp1, voltage-dependent anion channel(VDAC), hexokinase 1(HK1), NOD-like receptor protein 3(NLRP3), apoptosis-associated speck-like protein(ASC), caspase-1, cleaved-caspase-1, gasdermin D(GSDMD), cleaved N-terminal gasdermin D(GSDMD-N), IL-1β, IL-18, B-cell lymphoma-2(Bcl-2), B-cell lymphoma-xl(Bcl-xl), Bcl-2-associated death promoter(Bad), Bcl-2-associated X protein(Bax), apoptotic protease activating factor-1(Apaf-1), pro-caspase-3, cleaved-caspase-3, pro-caspase-9, cleaved-caspase-9, poly(ADP-ribose) polymerase-1(PARP-1), and cleaved-PARP-1 in cardiac tissues. The results showed that VA significantly improved cardiac function in mice with CF, reduced myocardial injury area and cardiac index, and decreased serum levels of AST, CK-MB, cTnI, LDH, ROS, IL-1β, IL-6, IL-18, and TNF-α. VA also lowered MDA and MPO levels, mRNA expressions of IL-1β, IL-6, IL-18, and TNF-α, and mRNA and protein expressions of Coll Ⅰ, Coll Ⅲ, and α-SMA in cardiac tissues, and increased serum levels of IL-4 and IL-10, cardiac tissue levels of CAT, GSH, SOD, and T-AOC, and mRNA expressions of IL-4 and IL-10. Additionally, VA ameliorated cardiac pathological damage, inhibited myocardial cell apoptosis, inflammatory infiltration, and collagen fiber deposition, reduced collagen volume fraction, and alleviated mitochondrial damage. VA decreased the ratio of F4/80~+CD86~+ M1 cells and the mRNA expressions of CD86 and iNOS in cardiac tissue, and increased the ratio of F4/80~+CD206~+ M2 cells and the mRNA expressions of CD206 and Arg-1. VA also reduced protein expressions of p-Drp1, VDAC, NLRP3, ASC, caspase-1, cleaved-caspase-1, GSDMD, GSDMD-N, IL-1β, IL-18, Bad, Bax, Apaf-1, cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP-1, and cytoplasmic cytochrome C, and increased the expressions of HK1, Bcl-2, Bcl-xl, pro-caspase-3, pro-caspase-9 proteins, as well as the Bcl-2/Bax and Bcl-xl/Bad ratios and mitochondrial cytochrome C content. These results indicate that VA has a significant ameliorative effect on ISO-induced CF in mice, alleviates ISO-induced oxidative damage and inflammatory response, and its mechanism may be closely related to the inhibition of Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways, suppression of myocardial cell inflammatory infiltration and collagen fiber deposition, reduction of collagen volume fraction and CollⅠ, Coll Ⅲ, and α-SMA expressions, thus mitigating CF.
Animals
;
Isoproterenol/adverse effects*
;
Male
;
Mice
;
Signal Transduction/drug effects*
;
Vanillic Acid/administration & dosage*
;
Dynamins/genetics*
;
Mice, Inbred C57BL
;
Fibrosis/genetics*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Myocardium/metabolism*
;
Humans
9.Mechanism of immediate administration of Angong Niuhuang Pills in intervention of traumatic brain injury based on metabolomics and transcriptomics.
Xiao-Tong ZHU ; Liang-Liang TIAN ; Jing-Jing ZHANG ; Hong-Jun YANG
China Journal of Chinese Materia Medica 2025;50(10):2750-2760
This study integrates metabolomics and transcriptomics to explore the immediate effects of Angong Niuhuang Pills(ANP) in intervening traumatic brain injury(TBI) in rats. A TBI model was successfully established in rats using the optimized Feeney free-fall impact technique. Rats were randomly divided into sham operation(sham) group, model(Mod) group, positive drug(piracetam) group, ANP low-dose(ANP-L) group, and ANP high-dose(ANP-H) group according to a random number table. Nissl staining and immunofluorescence were used to count the number of Nissl bodies and detect B-cell lymphoma-2(Bcl-2) gene, caspase-3, and tumor protein 53(TP53) expression in brain tissue, and enzyme-linked immunosorbent assay(ELISA) was used to measure prostaglandin-endoperoxide synthase 2(PTGS2) level in rat brain tissue. Metabolomics and transcriptomics analyses were conducted for brain tissue from sham, Mod, and ANP-H groups. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were carried out to indicate the mechanisms of ANP in the intervention of TBI. Integrative metabolomics and transcriptomics analysis revealed the metabolic pathways involved in ANP's intervention in TBI. The results showed that ANP significantly increased the number of Nissl bodies in TBI rat brain tissue, upregulated Bcl-2 expression, and downregulated the levels of caspase-3, TP53, and PTGS2. Compared to the Mod group, the ANP-H group significantly upregulated 12 differential metabolites(DMs) and downregulated 25 DMs. Five key metabolic pathways were identified, including glycerophospholipid metabolism, pyrimidine metabolism, glycine, threonine, and serine metabolism, arginine and proline metabolism, and D-amino acid metabolism. Transcriptomics identified 730 upregulated and 612 downregulated differentially expressed genes(DEGs). Enrichment analysis highlighted that biological functions related to inflammatory responses and apoptotic processes, and key signaling pathways, including phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt) and mitogen-activated protein kinase(MAPK) were significantly enriched. The data of transcriptomics and metabolomics pinpointed three key metabolic pathways, i.e., glycerophospholipid metabolism, pyrimidine metabolism, and glycine, threonine, and serine metabolism.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Brain Injuries, Traumatic/metabolism*
;
Male
;
Metabolomics
;
Rats, Sprague-Dawley
;
Transcriptome/drug effects*
;
Cyclooxygenase 2/genetics*
;
Brain/metabolism*
;
Caspase 3/genetics*
;
Humans
;
Tumor Suppressor Protein p53/genetics*
10.Optimal harvesting period of cultivated Notopterygium incisum based on HPLC specific chromatogram combined with chemometrics and entropy weight-gray correlation analysis.
Jing-Cheng WANG ; Hong-Bing SUN ; Teng LIU ; Wen-Tao ZHU ; Hong-Lan WANG ; Yi ZHOU ; Wei-Yan WANG ; Ping YANG ; Shun-Yuan JIANG
China Journal of Chinese Materia Medica 2025;50(14):3878-3886
To determine the optimal cultivation duration and harvest period for cultivated Notopterygium incisum and promote its industrial development, this study established a characteristic chromatographic profile of cultivated N. incisum and employed chemometrics combined with entropy-weighted grey correlation analysis to assess differences in agronomic traits and quality indicators across different cultivation years and harvest periods. By comparing with reference substances, ten common peaks were identified, including chlorogenic acid, p-coumaric acid, ferulic acid, marmesinin, nodakenin, isochlorogenic acid B, notopterol, phenethyl ferulate, isoimperatorin, and falcarindiol. The similarity between the characteristic chromatographic profiles of N. incisum at different cultivation years and the reference profile was all above 0.932. Principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) revealed that the quality of 1-to 3-year-old cultivated N. incisum was highly dispersed and unstable, whereas the quality of 4-year-old cultivated N. incisum remained relatively stable across different harvest periods. This suggests that the accumulation of relevant compounds in the medicinal material had reached a plateau, confirming that the optimal cultivation period for N. incisum is four years. Entropy-weighted grey correlation analysis indicated that the quality of 4-year-old cultivated N. incisum across different harvest periods ranked from highest to lowest as follows: November, December, October, August, July, and September, demonstrating that November is the optimal harvest time. The findings of this study establish the suitable cultivation duration and optimal harvest period for N. incisum, providing a scientific basis for cultivation guidance and quality standardization.
Chromatography, High Pressure Liquid/methods*
;
Apiaceae/chemistry*
;
Entropy
;
Chemometrics/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Principal Component Analysis
;
Quality Control

Result Analysis
Print
Save
E-mail