1.The Ferroptosis-inducing Compounds in Triple Negative Breast Cancer
Xin-Die WANG ; Da-Li FENG ; Xiang CUI ; Su ZHOU ; Peng-Fei ZHANG ; Zhi-Qiang GAO ; Li-Li ZOU ; Jun WANG
Progress in Biochemistry and Biophysics 2025;52(4):804-819
Ferroptosis, a programmed cell death modality discovered and defined in the last decade, is primarily induced by iron-dependent lipid peroxidation. At present, it has been found that ferroptosis is involved in various physiological functions such as immune regulation, growth and development, aging, and tumor suppression. Especially its role in tumor biology has attracted extensive attention and research. Breast cancer is one of the most common female tumors, characterized by high heterogeneity and complex genetic background. Triple negative breast cancer (TNBC) is a special type of breast cancer, which lacks conventional breast cancer treatment targets and is prone to drug resistance to existing chemotherapy drugs and has a low cure rate after progression and metastasis. There is an urgent need to find new targets or develop new drugs. With the increase of studies on promoting ferroptosis in breast cancer, it has gradually attracted attention as a treatment strategy for breast cancer. Some studies have found that certain compounds and natural products can act on TNBC, promote their ferroptosis, inhibit cancer cells proliferation, enhance sensitivity to radiotherapy, and improve resistance to chemotherapy drugs. To promote the study of ferroptosis in TNBC, this article summarized and reviewed the compounds and natural products that induce ferroptosis in TNBC and their mechanisms of action. We started with the exploration of the pathways of ferroptosis, with particular attention to the System Xc--cystine-GPX4 pathway and iron metabolism. Then, a series of compounds, including sulfasalazine (SAS), metformin, and statins, were described in terms of how they interact with cells to deplete glutathione (GSH), thereby inhibiting the activity of glutathione peroxidase 4 (GPX4) and preventing the production of lipid peroxidases. The disruption of the cellular defense against oxidative stress ultimately results in the death of TNBC cells. We have also our focus to the realm of natural products, exploring the therapeutic potential of traditional Chinese medicine extracts for TNBC. These herbal extracts exhibit multi-target effects and good safety, and have shown promising capabilities in inducing ferroptosis in TNBC cells. We believe that further exploration and characterization of these natural compounds could lead to the development of a new generation of cancer therapeutics. In addition to traditional chemotherapy, we discussed the role of drug delivery systems in enhancing the efficacy and reducing the toxicity of ferroptosis inducers. Nanoparticles such as exosomes and metal-organic frameworks (MOFs) can improve the solubility and bioavailability of these compounds, thereby expanding their therapeutic potential while minimizing systemic side effects. Although preclinical data on ferroptosis inducers are relatively robust, their translation into clinical practice remains in its early stages. We also emphasize the urgent need for more in-depth and comprehensive research to understand the complex mechanisms of ferroptosis in TNBC. This is crucial for the rational design and development of clinical trials, as well as for leveraging ferroptosis to improve patient outcomes. Hoping the above summarize and review could provide references for the research and development of lead compounds for the treatment for TNBC.
2.Role of radiotherapy in extensive-stage small cell lung cancer after durvalumab-based immunochemotherapy: A retrospective study.
Lingjuan CHEN ; Yi KONG ; Fan TONG ; Ruiguang ZHANG ; Peng DING ; Sheng ZHANG ; Ye WANG ; Rui ZHOU ; Xingxiang PU ; Bolin CHEN ; Fei LIANG ; Qiaoyun TAN ; Yu XU ; Lin WU ; Xiaorong DONG
Chinese Medical Journal 2025;138(17):2130-2138
BACKGROUND:
The purpose of this study was to evaluate the safety and efficacy of subsequent radiotherapy (RT) following first-line treatment with durvalumab plus chemotherapy in patients with extensive-stage small cell lung cancer (ES-SCLC).
METHODS:
A total of 122 patients with ES-SCLC from three hospitals during July 2019 to December 2021 were retrospectively analyzed. Inverse probability of treatment weighting (IPTW) analysis was performed to address potential confounding factors. The primary focus of our evaluation was to assess the impact of RT on progression-free survival (PFS) and overall survival (OS).
RESULTS:
After IPTW analysis, 49 patients received durvalumab plus platinum-etoposide (EP) chemotherapy followed by RT (Durva + EP + RT) and 72 patients received immunochemotherapy (Durva + EP). The median OS was 17.2 months vs . 12.3 months (hazard ratio [HR]: 0.38, 95% confidence interval [CI]: 0.17-0.85, P = 0.020), and the median PFS was 8.9 months vs . 5.9 months (HR: 0.56, 95% CI: 0.32-0.97, P = 0.030) in Durva + EP + RT and Durva + EP groups, respectively. Thoracic radiation therapy (TRT) resulted in longer OS (17.2 months vs . 14.7 months) and PFS (9.1 months vs . 7.2 months) compared to RT directed to other metastatic sites. Among patients with oligo-metastasis, RT also showed significant benefits, with a median OS of 17.4 months vs . 13.7 months and median PFS of 9.8 months vs . 5.9 months compared to no RT. Continuous durvalumab treatment beyond progression (TBP) prolonged OS compared to patients without TBP, in both the Durva + EP + RT (NA vs . 15.8 months, HR: 0.48, 95% CI: 0.14-1.63, P = 0.238) and Durva + EP groups (12.3 months vs . 4.3 months, HR: 0.29, 95% CI: 0.10-0.81, P = 0.018). Grade 3 or 4 adverse events occurred in 13 (26.5%) and 13 (18.1%) patients, respectively, in the two groups; pneumonitis was mostly low-grade.
CONCLUSION
Addition of RT after first-line immunochemotherapy significantly improved survival outcomes with manageable toxicity in ES-SCLC.
Humans
;
Small Cell Lung Carcinoma/therapy*
;
Retrospective Studies
;
Male
;
Female
;
Middle Aged
;
Lung Neoplasms/therapy*
;
Aged
;
Antibodies, Monoclonal/therapeutic use*
;
Adult
;
Immunotherapy/methods*
;
Aged, 80 and over
3.Research progress on biosynthesis of triterpenoids in Centella asiatica.
Pei-Na ZHOU ; Bin CHEN ; Cheng-Jie SHU ; Zhuo-Hang LI ; Peng CHEN ; Cheng-Hao FEI
China Journal of Chinese Materia Medica 2025;50(3):609-619
The triterpenoid saponins of Centella asiatica, including asiaticoside, madecassoside, asiatic acid, and madecassic acid, are pivotal bioactive compounds of the plant. These constituents exhibit a spectrum of pharmacological activities, such as antioxidant, antitumor, and antidepressant effects, promotion of wound healing, and enhancement of microcirculation. Owing to these therapeutic properties, C. asiatica is widely employed in pharmaceutical and cosmetic industries. However, the escalating global demand for its extracts has led to potential supply shortages, prompting researchers to use multiple strategies such as multi-omics, molecular biology, and synthetic biology to conduct extensive studies. These studies encompass the elucidation of the biosynthetic pathways of triterpenoid saponins in C. asiatica, metabolic regulation, the hormonal induction of secondary metabolite synthesis, and the application of biotechnological strategies for natural product production to increase the yield of secondary metabolites in C. asiatica, or to produce active components via microbial chassis, thus satisfying market demands and promoting the sustainable exploitation of wild C. asiatica resources. This article first introduced the triterpenoid saponins of C. asiatica and their biological activities, then summarized the latest research advancements in their biosynthetic pathways, metabolic regulation, and heterologous biosynthesis, and provided an outlook on future development directions, with the aim of providing reference for comprehensive resource development and biotechnological synthesis of active components from C. asiatica.
Centella/genetics*
;
Triterpenes/chemistry*
;
Biosynthetic Pathways
;
Humans
;
Drugs, Chinese Herbal/chemistry*
;
Plant Extracts
4.Identification of terpenoid synthases family in Perilla frutescens and functional analysis of germacrene D synthase.
Pei-Na ZHOU ; Zai-Biao ZHU ; Lei XIONG ; Ying ZHANG ; Peng CHEN ; Huang-Jin TONG ; Cheng-Hao FEI
China Journal of Chinese Materia Medica 2025;50(10):2658-2673
Based on whole-genome identification of the TPS gene family in Perilla frutescens and screening, cloning, bioinformatics, and expression analysis of the synthetic enzyme for the insect-resistant component germacrene D, this study lays the foundation for understanding the biological function of the TPS gene family and the insect resistance mechanism in P. frutescens. This study used bioinformatics tools to identify the TPS gene family of P. frutescens based on its whole genome and predicted the physicochemical properties, systematic classification, and promoter cis-elements of the proteins. The relative content of germacrene D was detected in both normal and insect-infested leaves of P. frutescens, and the germacrene D synthase was screened and isolated. Gene cloning, bioinformatics analysis, and expression profiling were then performed. The results showed that a total of 99 TPS genes were identified in the genome, which were classified into the TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g subfamilies. Conserved motif analysis showed that the TPS in P. frutescens has conserved structural characteristics within the same subfamily. Promoter cis-element analysis predicted the presence of light-responsive elements, multiple hormone-responsive elements, and stress-responsive elements in the TPS family of P. frutescens. Transcriptome data revealed that most of the TPS genes in P. frutescens were highly expressed in the leaves. GC-MS analysis showed that the relative content of germacrene D significantly increased in insect-damaged leaves, suggesting that it may act as an insect-resistant component. The germacrene D synthase gene was screened through homologous protein binding gene expression and was found to belong to the TPS-a subfamily, encoding a 64.89 kDa protein. This protein was hydrophilic, lacked a transmembrane structure and signal peptide, and was predominantly expressed in leaves, with significantly higher expression in insect-damaged leaves compared to normal leaves. In vitro expression results showed that germacrene D synthase tended to form inclusion bodies. Molecular docking showed that farnesyl pyrophosphate(FPP) fell into the active pocket of the protein and interacted strongly with six active sites. This study provides a foundation for further research on the biological functions of the TPS gene family in P. frutescens and the molecular mechanisms underlying its insect resistance.
Perilla frutescens/chemistry*
;
Plant Proteins/chemistry*
;
Multigene Family
;
Sesquiterpenes, Germacrane/metabolism*
;
Alkyl and Aryl Transferases/chemistry*
;
Phylogeny
;
Gene Expression Regulation, Plant
5.A preliminary study of risk factors for the stress fracture in treated with clavicle hook plate.
Peng-Fei NIE ; Yuan-Lin XU ; Yong-Fu LI ; Lun ZHANG ; Qian-Qian ZHOU ; Jian-Nyu LUO ; Jian GUO
China Journal of Orthopaedics and Traumatology 2025;38(1):61-65
OBJECTIVE:
To investigate the effects of bone density, plate bending degree and proximal screw type on the stress fracture of clavicle hook.
METHODS:
Three sows weighing between 45 and 50 kg were selected, from which a total of 40 rivs were collected. The 15 ribs of sows were divided into 3 groups according to bone density and bone hardness with 5 rivs in each group. And then the 3 groups were fixed with 6-hole collarbone hook plates and 3 locking screws. Measure the maximum torsion force when the ribs were fractured by force. The same size 15 rids were divided into 3 groups, named forward bending group, 0° group(the angle between the plate surface and the rib surface) and reverse bending group. All fixed with 6-hole collarbone hook plates and locking screws to measure the maximum torsion force of rib stress fracture. Then the same size 10 rids were divided into 2 groups, the normal screw group and the locking screw group with 5 ribs in each group. Both groups were fixed with 6-hole collarbone hook plates and screws. The normal screw group was a normal screw, fixed in proximal end, and two locking screws. The locking screw group was fixed by locking screws. Measure the maximum torsion force of the two groups when the ribs fracture by force.
RESULTS:
In the bone density experiment, the torque force of hard bone group (104.51±6.27) N was greater than the normal bone group (75.04±3.81) N(t=8.979, P<0.05). The force of normal bone group was greater than the osteoporosis group (49.99±2.12) N(t=12.832, P<0.05). In the bending collarbone hook experiment, the order of the torque force generated by each group as follow:the forward bending group (343.59±6.18) N greater than the 0° group (106.01±5.29) N(t=65.279, P<0.05) greater than the reverse bending group (95.82±4.12) N(t=3.398, P<0.05). The force of the normal screw group (98.68±0.70) N was greater than the locking screw group (50.20±0.95) N(t=91.484, P<0.05). The data comparisons of each group were statistically significant.
CONCLUSION
Bone density, plate bending degree and proximal screw type had an impact on stress fracture of clavicle hook plate. Higher bone density, forward bending of the steel plate, and ordinary screws in proximal end can reduce the rates of stress fractures of clavicle hooks.
Animals
;
Bone Plates
;
Clavicle/surgery*
;
Swine
;
Fractures, Stress/etiology*
;
Female
;
Risk Factors
;
Fracture Fixation, Internal/instrumentation*
;
Bone Screws
;
Biomechanical Phenomena
;
Bone Density
6.Effects of human umbilical cord-derived mesenchymal stem cell therapy for cavernous nerve injury-induced erectile dysfunction in the rat model.
Wei WANG ; Ying LIU ; Zi-Hao ZHOU ; Kun PANG ; Jing-Kai WANG ; Peng-Fei HUAN ; Jing-Ru LU ; Tao ZHU ; Zuo-Bin ZHU ; Cong-Hui HAN
Asian Journal of Andrology 2025;27(4):508-515
Stem cell treatment may enhance erectile dysfunction (ED) in individuals with cavernous nerve injury (CNI). Nevertheless, no investigations have directly ascertained the implications of varying amounts of human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) on ED. We compare the efficacy of three various doses of HUC-MSCs as a therapeutic strategy for ED. Sprague-Dawley rats (total = 175) were randomly allocated into five groups. A total of 35 rats underwent sham surgery and 140 rats endured bilateral CNI and were treated with vehicles or doses of HUC-MSCs (1 × 10 6 cells, 5 × 10 6 cells, and 1 × 10 7 cells in 0.1 ml, respectively). Penile tissues were harvested for histological analysis on 1 day, 3 days, 7 days, 14 days, 28 days, 60 days, and 90 days postsurgery. It was found that varying dosages of HUC-MSCs enhanced the erectile function of rats with bilateral CNI and ED. Moreover, there was no significant disparity in the effectiveness of various dosages of HUC-MSCs. However, the expression of endothelial markers (rat endothelial cell antigen-1 [RECA-1] and endothelial nitric oxide synthase [eNOS]), smooth muscle markers (alpha smooth muscle actin [α-SMA] and desmin), and neural markers (neurofilament [RECA-1] and neurogenic nitric oxide synthase [nNOS]) increased significantly with prolonged treatment time. Masson's staining demonstrated an increased in the smooth muscle cell (SMC)/collagen ratio. Significant changes were detected in the microstructures of various types of cells. In vivo imaging system (IVIS) analysis showed that at the 1 st day, the HUC-MSCs implanted moved to the site of damage. Additionally, the oxidative stress levels were dramatically reduced in the penises of rats administered with HUC-MSCs.
Male
;
Animals
;
Erectile Dysfunction/metabolism*
;
Rats, Sprague-Dawley
;
Mesenchymal Stem Cell Transplantation/methods*
;
Rats
;
Penis/pathology*
;
Humans
;
Disease Models, Animal
;
Umbilical Cord/cytology*
;
Peripheral Nerve Injuries/complications*
;
Mesenchymal Stem Cells
;
Nitric Oxide Synthase Type III/metabolism*
;
Actins/metabolism*
;
Nitric Oxide Synthase Type I/metabolism*
7.Short-term Effects of Fine Particulate Matter and its Constituents on Acute Exacerbations of Chronic Bronchitis: A Time-stratified Case-crossover Study.
Jing Wei ZHANG ; Jian ZHANG ; Peng Fei LI ; Yan Dan XU ; Xue Song ZHOU ; Xiu Li TANG ; Jia QIU ; Zhong Ao DING ; Ming Jia XU ; Chong Jian WANG
Biomedical and Environmental Sciences 2025;38(3):389-393
8.The underlying logic, innovative thinking and research paradigm of antiviral medicinal chemistry
Shuo WANG ; Bao-hu LI ; Shu-jing XU ; Yang ZHOU ; Jin-fei YANG ; Xin-yong LIU ; Peng ZHAN
Acta Pharmaceutica Sinica 2024;59(7):1916-1931
Antiviral drug research and development is an important research direction in the current and future biomedical field. The research and development of antiviral drugs not only requires the application of new strategies and new technologies, but also requires the complementary advantages and close cooperation of project teams. Based on the latest progress in this field and the author's drug research practice, this paper summarizes the underlying logic, innovative thinking and research paradigm of antiviral medicinal chemistry.
9.Impairment of Autophagic Flux After Hypobaric Hypoxia Potentiates Oxidative Stress and Cognitive Function Disturbances in Mice.
Shuhui DAI ; Yuan FENG ; Chuanhao LU ; Hongchen ZHANG ; Wenke MA ; Wenyu XIE ; Xiuquan WU ; Peng LUO ; Lei ZHANG ; Fei FEI ; Zhou FEI ; Xia LI
Neuroscience Bulletin 2024;40(1):35-49
Acute hypobaric hypoxic brain damage is a potentially fatal high-altitude sickness. Autophagy plays a critical role in ischemic brain injury, but its role in hypobaric hypoxia (HH) remains unknown. Here we used an HH chamber to demonstrate that acute HH exposure impairs autophagic activity in both the early and late stages of the mouse brain, and is partially responsible for HH-induced oxidative stress, neuronal loss, and brain damage. The autophagic agonist rapamycin only promotes the initiation of autophagy. By proteome analysis, a screen showed that protein dynamin2 (DNM2) potentially regulates autophagic flux. Overexpression of DNM2 significantly increased the formation of autolysosomes, thus maintaining autophagic flux in combination with rapamycin. Furthermore, the enhancement of autophagic activity attenuated oxidative stress and neurological deficits after HH exposure. These results contribute to evidence supporting the conclusion that DNM2-mediated autophagic flux represents a new therapeutic target in HH-induced brain damage.
Mice
;
Animals
;
Hypoxia
;
Oxidative Stress
;
Autophagy
;
Cognition
;
Sirolimus/therapeutic use*
10.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.

Result Analysis
Print
Save
E-mail