1.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Chemical constituents of butyl-phthalides from Ligusticum sinense.
Hang LIU ; Xue-Ming ZHOU ; Ting ZHENG ; Mei-Zhu WU ; Shuo FENG ; Ye LIN ; Xin-Ming SONG ; Ji-Ling YI
China Journal of Chinese Materia Medica 2025;50(2):439-443
Eight butyl-phthalides, senkyunolide K(1), senkyunolide N(2), butylphthalide(3), senkyunolide I(4), senkyunolide H(5),(Z)-butylidenephthalide(6),(Z)-ligustilide(7), and 3-butylidene-7-hydroxyphthalide(8) were isolated from the aerial part of Ligusticum sinense by column chromatography on silica gel column, ODS, Sephadex LH-20 and semi-preparative HPLC. Their structures were elucidated on the basis of spectroscopic and chemical data, especially NMR and MS. Compound 1 was a new butyl-phthalide and compounds 2-8 were isolated from the aerial part of L. sinense for the first time. Furthermore, the inhibitory activities of compounds 1-8 against the nitric oxide(NO) production induced by lipopolysaccharide(LPS) in mouse RAW264.7 macrophages in vitro were evaluated. The results showed that compounds 1-8 exerted inhibitory activities on NO production with IC_(50) of 19.34-42.16 μmol·L~(-1).
Animals
;
Mice
;
Nitric Oxide/biosynthesis*
;
Ligusticum/chemistry*
;
Benzofurans/isolation & purification*
;
Drugs, Chinese Herbal/isolation & purification*
;
Macrophages/immunology*
;
RAW 264.7 Cells
;
Molecular Structure
5.Deubiquitinase JOSD2 alleviates colitis by inhibiting inflammation via deubiquitination of IMPDH2 in macrophages.
Xin LIU ; Yi FANG ; Mincong HUANG ; Shiliang TU ; Boan ZHENG ; Hang YUAN ; Peng YU ; Mengyao LAN ; Wu LUO ; Yongqiang ZHOU ; Guorong CHEN ; Zhe SHEN ; Yi WANG ; Guang LIANG
Acta Pharmaceutica Sinica B 2025;15(2):1039-1055
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract, which increases the incidence of colorectal cancer (CRC). In the pathophysiology of IBD, ubiquitination/deubiquitination plays a critical regulatory function. Josephin domain containing 2 (JOSD2), a deubiquitinating enzyme, controls cell proliferation and carcinogenesis. However, its role in IBD remains unknown. Colitis mice model developed by dextran sodium sulfate (DSS) or colon tissues from individuals with ulcerative colitis and Crohn's disease showed a significant upregulation of JOSD2 expression in the macrophages. JOSD2 deficiency exacerbated the phenotypes of DSS-induced colitis by enhancing colon inflammation. DSS-challenged mice with myeloid-specific JOSD2 deletion developed severe colitis after bone marrow transplantation. Mechanistically, JOSD2 binds to the C-terminal of inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) and preferentially cleaves K63-linked polyubiquitin chains at the K134 site, suppressing IMPDH2 activity and preventing activation of nuclear factor kappa B (NF-κB) and inflammation in macrophages. It was also shown that JOSD2 knockout significantly exacerbated increased azoxymethane (AOM)/DSS-induced CRC, and AAV6-mediated JOSD2 overexpression in macrophages prevented the development of colitis in mice. These outcomes reveal a novel role for JOSD2 in colitis through deubiquitinating IMPDH2, suggesting that targeting JOSD2 is a potential strategy for treating IBD.
6.Ionizing Radiation Alters Circadian Gene Per1 Expression Profiles and Intracellular Distribution in HT22 and BV2 Cells.
Zhi Ang SHAO ; Yuan WANG ; Pei QU ; Zhou Hang ZHENG ; Yi Xuan LI ; Wei WANG ; Qing Feng WU ; Dan XU ; Ju Fang WANG ; Nan DING
Biomedical and Environmental Sciences 2025;38(11):1451-1457
7.Structure-based development of potent and selective type-II kinase inhibitors of RIPK1.
Ying QIN ; Dekang LI ; Chunting QI ; Huaijiang XIANG ; Huyan MENG ; Jingli LIU ; Shaoqing ZHOU ; Xinyu GONG ; Ying LI ; Guifang XU ; Rui ZU ; Hang XIE ; Yechun XU ; Gang XU ; Zheng ZHANG ; Shi CHEN ; Lifeng PAN ; Ying LI ; Li TAN
Acta Pharmaceutica Sinica B 2024;14(1):319-334
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a key regulator in inflammation and cell death and is involved in mediating a variety of inflammatory or degenerative diseases. A number of allosteric RIPK1 inhibitors (RIPK1i) have been developed, and some of them have already advanced into clinical evaluation. Recently, selective RIPK1i that interact with both the allosteric pocket and the ATP-binding site of RIPK1 have started to emerge. Here, we report the rational development of a new series of type-II RIPK1i based on the rediscovery of a reported but mechanistically atypical RIPK3i. We also describe the structure-guided lead optimization of a potent, selective, and orally bioavailable RIPK1i, 62, which exhibits extraordinary efficacies in mouse models of acute or chronic inflammatory diseases. Collectively, 62 provides a useful tool for evaluating RIPK1 in animal disease models and a promising lead for further drug development.
8.Modification with IL-21 and CCL19 enhances killing efficiency and tumor infiltration of NKP30 CAR-T cells in lung cancer
Zhifeng ZHOU ; Shuoyan LIU ; Jieyu LI ; Mingqiu CHEN ; Hui LIN ; Yujie CHEN ; Weijie CHEN ; Junpeng LIN ; Hang ZHOU ; Qinfeng ZHENG
Journal of Southern Medical University 2024;44(10):1926-1936
Objective To investigate whether modification with IL-21 and CCL19 enhances killing and tumor-infiltrating efficiency of NKP30 CAR-T cells in lung cancer.Methods The modified IL-21-CCL19 NKP30 CAR-T cells expressing IL-21 and CCL19 fusion gene was constructed based on NKP30 CAR-T cells and stimulated with CD3CD28 antibodies and IL-2.The immunophenotype and migration of the cells in the presence of IL-21 were investigated using flow cytometry and migration experiments.Lactate dehydrogenase(LDH)release and sphere formation assays were used to assess the killing and infiltration capabilities of CAR-T cells,and the secretion levels of IFN-γ,IL-21 and CCL19 were determined with enzyme-linked immunospot assay(ELISPOT)and ELISA.A zebrafish model bearing HCG-27 cell xenograft was established by microinjection of the tumor cells into the yolk sac followed 24 h later by injection of the immune cells at the same site,and the fluorescence signals were captured using a fluorescent microscopy.Results The NKP30 ligand B7H6,which was almost undetectable in normal tissues and blood cells,was highly expressed(over 90%)in lung cancer cells.Compared with NKP30 CAR-T cells and conventional T cells,IL-21-CCL19 NKP30 CAR-T cells exhibited stronger proliferative and migration capabilities with the formation of central memory T cells.The reduced expressions of CTLA4 and PD1 in the constructed cells resulted in enhanced killing efficiency against lung cancer cells accompanied by significantly increased production of IFN-γ,IL-21 and CCL19.In the zebrafish models,CAR-T cells exhibited stronger cytotoxicity and proliferative abilities than typical T cells,but these differences were not statistically significant between the two CAR-T cells.Conclusion Modification of NKP30 CAR-T cells with IL-21 and CCL19 facilitates their access into solid tumors for more effective tumor cell killing while producing a large number of memory T cells.
9.Deep inferior epigastric artery perforator flap with transverse symmetrical design in reconstruction of soft tissue defects in limbs: a report of 12 cases
Yaping LIU ; Linjun TANG ; Xianhe LI ; Hang ZHANG ; Shaoyong ZHOU ; Hua ZHENG
Chinese Journal of Microsurgery 2024;47(5):502-507
Objective:To investigate the feasibility, clinical efficacy and donor site impact of the deep inferior epigastric artery perforator flap (DIEPF) with transverse symmetrical design in reconstruction of soft tissue defects in limbs.Methods:From September 2020 to August 2023, 12 patients with soft tissue defects of limbs who agreed to flap donor site in the lower abdominal wall were treated in the Department of Hand Surgery and Microsurgery, Sichuan Modern Hospital. There were 10 females and 2 males with an average age of 58.42 years old. Defect sites: 3 in upper limbs and 9 in lower limbs. Sizes of the soft tissue defect were 8.0 cm×15.0 cm-13.0 cm×40.0 cm. CTA or CDU was used to detect the perforators of deep inferior epigastric artery and appropriate perforators were selected. The width and length of redundant skin and subcutaneous tissues in the lower abdomen were evaluated according to the "pinch and lift test". Taking into account the requirements of abdominoplasty, symmetrical bilateral DIEPFs were designed in the transverse direction on the lower abdominal wall. The sizes of the flaps were 7.5 cm×24.0 cm-13.0 cm ×42.0 cm. The harvested flaps were firstly thinned under the microscope, trimmed and shaped properly to match the profile of the wounds. Blood circulation was reconstructed with various forms of vascular anastomoses, such as internal pressurisation, connection in series and Flow-through, etc. Lower abdominal wall wound should be gradually reduced in tension according to the requirements of abdominal wall plastic surgery, and cosmetic suturing should be performed.Results:All 12 DIEPFs survived. The lower abdominal donor site healed primarily. All patients were included in postoperative follow-up for 6 to 42 (average 18.31) months. All flaps were normal in colour and soft in texture. The appearance of abdominal walls were improved, and the function was not affected, except 1 patient who underwent debulking procedure 3 months after the surgery.Conclusion:The transverse symmetrical design of a DIEPF is an ideal method for reconstruction of soft tissue defects in limbs after appropriate flap modification. It is a win-win solution for an aesthetic appearance of donor and recipient sites of the flap.
10.Analysis of Traditional Chinese Medicine Constitution Types of Nonspecific Low Back Pain and the Influencing Factors for the Thickness of Ligamentum Flavum
Zhou-Hang ZHENG ; Yu ZHANG ; Long CHEN ; Dong-Chun YOU ; Wei-Feng GUO ; Xing-Ming LIU ; Huan CHEN ; Rong-Hai WU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(5):1103-1108
Objective To investigate the distribution of the traditional Chinese medicine(TCM)constitution types in the patients with nonspecific low back pain(NLBP)and to explore the correlation of the thickness of ligamentum flavum with the age,body mass index(BMI),gender,the presence of diabetes mellitus,and the grading of hypertension.Methods Sixty patients with NLBP admitted to Guangdong Second Traditional Chinese Medicine Hospital from January 2023 to June 2023 were selected as the study subjects.The TCM constitution types of the patients were identified,the thickness of the ligamentum flavum at lumbar vertebrae 4/5 segment(L4/5)disc level was measured by computerized tomography(CT)scanning,and the patients'age,genders,TCM constitution types,BMI,the presence or absence of diabetes mellitus,and hypertension grading were recorded.Correlation analysis and linear regression analysis were used for the exploration of the relevant influencing factors for the thickness of the ligamentum flavum of patients with NLBP.Results(1)The average thickness of ligamentum flavum in the 60 patients with NLBP was(2.60±0.72)mm.(2)The TCM constitutions of NLBP patients were classified into four types,of which blood stasis constitution was the most common,accounting for 21 cases(35.0%),followed by 19 cases(31.7%)of damp-heat constitution,12 cases(20.0%)of phlegm-damp constitution,and 8 cases(13.3%)of qi deficiency constitution.(3)The results of correlation analysis showed that BMI,gender,TCM constitution type and the presence or absence of diabetes mellitus had no influence on the thickness of ligamentum flavum in NLBP patients(P>0.05),while the age and hypertension grading had an influence on the thickness of ligamentum flavum(P<0.01).(4)The results of linear regression analysis showed that the age had an influence on the thickness of the ligamentum flavum(b = 0.034,t = 6.282,P<0.01),while the influence of the hypertension grading had no influence on the thickness of the ligamentum flavum(P>0.05).Conclusion The TCM constitution type of NLBP patients is predominated by blood stasis constitution,the thickness of ligamentum flavum is significantly affected by the age,and hypertension may be a potential factor affecting the thickness of ligamentum flavum.

Result Analysis
Print
Save
E-mail