1.Role of neutrophil in fungal keratitis
Junming YANG ; Yanting LUO ; Hong HE ; Xingwu ZHONG
International Eye Science 2025;25(2):230-234
Fungal keratitis represents a significant cause of blindness, with current therapeutic approaches yielding limited success. The disease's onset and progression are primarily driven by fungal virulence factors and the host's immune response. The innate immune system is the first to respond, with neutrophils playing a pivotal role in the antifungal defense. Although neutrophils are critical for pathogen clearance, their excessive or abnormal activation can lead to tissue damage, exacerbating the disease. Thus, elucidating the mechanisms underlying neutrophil activity in fungal keratitis is crucial for refining treatment strategies. This article aims to systematically review the principal antimicrobial mechanisms employed by neutrophils, including phagocytosis, degranulation, and the formation of neutrophil extracellular traps(NETs). Furthermore, it explores the crosstalk between neutrophils and macrophages, alongside their collective impact and underlying mechanisms in the context of fungal keratitis. Exploration of the mechanisms of fungal keratitis facilitates precise intervention and enhances the efficacy of treatment.
2.Chinese expert consensus on postoperative follow-up for non-small cell lung cancer (version 2025)
Lunxu LIU ; Shugeng GAO ; Jianxing HE ; Jian HU ; Di GE ; Hecheng LI ; Mingqiang KANG ; Fengwei TAN ; Fan YANG ; Qiang PU ; Kaican CAI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):281-290
Surgical treatment is one of the key approaches for non-small cell lung cancer (NSCLC). Regular postoperative follow-up is crucial for early detection and timely management of tumor recurrence, metastasis, or second primary tumors. A scientifically sound and reasonable follow-up strategy not only extends patient survival but also significantly improves quality of life, thereby enhancing overall prognosis. This consensus aims to build upon the previous version by incorporating the latest clinical research advancements and refining postoperative follow-up protocols for early-stage NSCLC patients based on different treatment modalities. It provides a scientific and practical reference for clinicians involved in the postoperative follow-up management of NSCLC. By optimizing follow-up strategies, this consensus seeks to promote the standardization and normalization of lung cancer diagnosis and treatment in China, helping more patients receive high-quality care and long-term management. Additionally, the release of this consensus is expected to provide insights for related research and clinical practice both domestically and internationally, driving continuous development and innovation in the field of postoperative management for NSCLC.
3.Dynamics Changes of Long Non-Coding RNA in the Testis and Epididymis During Male Mouse Aging
Hongle HE ; Rui SUN ; Jinhong GUAN ; Ruoyang CHEN ; Yun XIE ; Chengqiang MO ; Xianshen SHA ; Yanping HUANG
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(5):806-815
ObjectiveTo investigate the dynamic expression profiles and potential regulatory mechanisms of long non-coding RNAs (lncRNAs) in male reproductive system aging. MethodsA naturally aging C57BL/6 mouse model was used and 4 mice were selected each at 3, 15, and 21 months of age. RNA was extracted from seven regions of the male reproductive tract (testis, efferent duct, initial segment of epididymis, caput epididymis, corpus epididymis, cauda epididymis, and vas deferens), followed by RNA sequencing and bioinformatics analysis. ResultsRegion-specific dynamic expression profiles of lncRNAs were constructed in the testis, epididymis (efferent duct, initial segment, caput, corpus, and cauda), and vas deferens of male mice. Combined with gene functional enrichment analysis, the functional associations of lncRNAs were elucidated in reproductive system aging. The differentially expressed lncRNAs in the aging testis were primarily involved in hormone biosynthesis and extracellular matrix organization, while those in the initial segment of the epididymis were closely related to cell recognition and epithelial cell migration. A comprehensive lncRNA expression atlas associated with male reproductive aging was established. ConclusionLncRNAs may participate in male reproductive aging through the regulation of the reproductive microenvironment, which provides key molecular targets and a research foundation for understanding age-related fertility decline.
4.Immune checkpoint inhibitor-related T-cell-mediated rejection increases the risk of perioperative graft loss after liver transplantation.
Li PANG ; Yutian LIN ; Tao DING ; Yanfang YE ; Kenglong HUANG ; Fapeng ZHANG ; Xinjun LU ; Guangxiang GU ; Haoming LIN ; Leibo XU ; Kun HE ; Kwan MAN ; Chao LIU ; Wenrui WU
Chinese Medical Journal 2025;138(15):1843-1852
BACKGROUND:
Pre-transplant exposure to immune checkpoint inhibitors (ICIs) significantly increases the risk of allograft rejection after liver transplantation (LT); however, whether ICI-related rejection leads to increased graft loss remains controversial. Therefore, this study aimed to investigate the association between ICI-related allograft rejection and perioperative graft loss.
METHODS:
This was a retrospective analysis of adult liver transplant recipients with early biopsy-proven T-cell-mediated rejection (TCMR) at Liver Transplantation Center of Sun Yat-sen Memorial Hospital from June 2019 to September 2024. The pathological features, clinical characteristics, and perioperative graft survival were analyzed.
RESULTS:
Twenty-eight patients who underwent early TCMR between June 2019 and September 2024 were included. Based on pre-LT ICI exposure, recipients were categorized into ICI-related TCMR (irTCMR, n = 12) and conventional TCMR (cTCMR, n = 16) groups. Recipients with irTCMR had a higher median Banff rejection activity index (RAI) (6 vs . 5, P = 0.012) and more aggressive tissue damage and inflammation. Recipients with irTCMR showed higher proportion of treatment resistance, achieving a complete resolution rate of only 8/12 compared to 16/16 for cTCMR. Graft loss occurred in 5/12 of irTCMR recipients within 90 days after LT, with no graft loss in cTCMRs recipients. Cox analysis demonstrated that irTCMR with an ICI washout period of <30 days was an independent risk factor for perioperative graft loss (hazard ratio [HR], 6.540; 95% confidence interval [CI], 1.067-40.067, P = 0.042).
CONCLUSION
IrTCMR is associated with severe pathological features, increased resistance to treatment, and higher graft loss in adult liver transplant recipients.
Humans
;
Liver Transplantation/adverse effects*
;
Male
;
Female
;
Middle Aged
;
Retrospective Studies
;
Graft Rejection/immunology*
;
Immune Checkpoint Inhibitors/therapeutic use*
;
Adult
;
T-Lymphocytes/drug effects*
;
Graft Survival/immunology*
;
Aged
5.Research progress in surgical techniques for treatment of limb lymphedema.
Ting HE ; Zewen WANG ; Tao ZHANG ; Fan YANG ; Baoyi LIU
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(2):230-236
OBJECTIVE:
To review the latest research advancements in surgical techniques for the treatment of limb lymphedema.
METHODS:
The relevant literature at home and abroad in recent years was extensively reviewed, and the research on the treatment of limb lymphedema by surgical techniques were summarized and analyzed.
RESULTS:
Lymphovenous anastomosis has demonstrated good effectiveness for early to mid-stage limb lymphedema, however its long-term effectiveness and applicability for late-stage limb lymphedema still require further validation. Autologous lymphatic/venous grafting has shown clinical feasibility in the treatment of secondary limb lymphedema. Research on tissue-engineered lymphatic scaffolds remains insufficient, primarily due to the complexity of lymphatic anatomical structures and the technical challenges involved. Nevertheless, its potential application is promising. Vascularized lymph node flap transplantation has shown significant effectiveness in treating limb lymphedema, particularly yielding good outcomes in upper limb cases. However, it can not guarantee a complete cure for the condition. Charles' operation is the most effective treatment option for patients with late-stage limb lymphedema, but its extensive incision and severe postoperative complications limit its application. Liposuction has the advantages such as minimal invasiveness, high safety, and repeatability. It is suitable for patients with late-stage limb lymphedema who have failed conservative treatment or developed adiposity. However, its effectiveness is limited in patients with significant limb fibrosis.
CONCLUSION
Current treatments for limb lymphedema require further improvement, and there is considerable debate regarding treatment strategies for different stages of the condition. Future high-quality, multi-system combined treatment approaches are anticipated to guide clinical practice.
Humans
;
Lymphedema/surgery*
;
Surgical Flaps/blood supply*
;
Lymphatic Vessels/surgery*
;
Anastomosis, Surgical/methods*
;
Lymph Nodes/transplantation*
;
Lipectomy/methods*
;
Extremities/surgery*
;
Treatment Outcome
;
Tissue Engineering
;
Tissue Scaffolds
;
Veins/transplantation*
6.Discovery of a potential hematologic malignancies therapy: Selective and potent HDAC7 PROTAC degrader targeting non-enzymatic function.
Yuheng JIN ; Xuxin QI ; Xiaoli YU ; Xirui CHENG ; Boya CHEN ; Mingfei WU ; Jingyu ZHANG ; Hao YIN ; Yang LU ; Yihui ZHOU ; Ao PANG ; Yushen LIN ; Li JIANG ; Qiuqiu SHI ; Shuangshuang GENG ; Yubo ZHOU ; Xiaojun YAO ; Linjie LI ; Haiting DUAN ; Jinxin CHE ; Ji CAO ; Qiaojun HE ; Xiaowu DONG
Acta Pharmaceutica Sinica B 2025;15(3):1659-1679
HDAC7, a member of class IIa HDACs, plays a pivotal regulatory role in tumor, immune, fibrosis, and angiogenesis, rendering it a potential therapeutic target. Nevertheless, due to the high similarity in the enzyme active sites of class IIa HDACs, inhibitors encounter challenges in discerning differences among them. Furthermore, the substitution of key residue in the active pocket of class IIa HDACs renders them pseudo-enzymes, leading to a limited impact of enzymatic inhibitors on their function. In this study, proteolysis targeting chimera (PROTAC) technology was employed to develop HDAC7 drugs. We developed an exceedingly selective HDAC7 PROTAC degrader B14 which showcased superior inhibitory effects on cell proliferation compared to TMP269 in various diffuse large B cell lymphoma (DLBCL) and acute myeloid leukemia (AML) cells. Subsequent investigations unveiled that B14 disrupts BCL6 forming a transcriptional inhibition complex by degrading HDAC7, thereby exerting proliferative inhibition in DLBCL. Our study broadened the understanding of the non-enzymatic functions of HDAC7 and underscored the importance of HDAC7 in the treatment of hematologic malignancies, particularly in DLBCL and AML.
7.Anti-SARS-CoV-2 prodrug ATV006 has broad-spectrum antiviral activity against human and animal coronaviruses.
Tiefeng XU ; Kun LI ; Siyao HUANG ; Konstantin I IVANOV ; Sidi YANG ; Yanxi JI ; Hanwei ZHANG ; Wenbin WU ; Ye HE ; Qiang ZENG ; Feng CONG ; Qifan ZHOU ; Yingjun LI ; Jian PAN ; Jincun ZHAO ; Chunmei LI ; Xumu ZHANG ; Liu CAO ; Deyin GUO
Acta Pharmaceutica Sinica B 2025;15(5):2498-2510
Coronavirus-related diseases pose a significant challenge to the global health system. Given the diversity of coronaviruses and the unpredictable nature of disease outbreaks, the traditional "one bug, one drug" paradigm struggles to address the growing number of emerging crises. Therefore, there is an urgent need for therapeutic agents with broad-spectrum anti-coronavirus activity. Here, we provide evidence that ATV006, an anti-SARS-CoV-2 nucleoside analog targeting RNA-dependent RNA polymerase (RdRp), has broad antiviral activity against human and animal coronaviruses. Using mouse hepatitis virus (MHV) and human coronavirus NL63 (HCoV-NL63) as a model, we show that ATV006 has potent prophylactic and therapeutic activity against murine coronavirus infection in vivo. Remarkably, ATV006 successfully inhibits viral replication in mice even when administered 96 h after infection. Due to its oral bioavailability and potency against multiple coronaviruses, ATV006 has the potential to become a useful antiviral agent against SARS-CoV-2 and other circulating and emerging coronaviruses in humans and animals.
8.Phenotypic plasticity and secretory heterogeneity in subpopulations derived from single cancer cell.
Zhun LIN ; Siping LIANG ; Zhe PU ; Zhengyu ZOU ; Luxuan HE ; Christopher J LYON ; Yuanqing ZHANG ; Tony Y HU ; Minhao WU
Acta Pharmaceutica Sinica B 2025;15(5):2723-2735
Single-cell analysis of phenotypic plasticity could improve the development of more effective therapeutics. Still, the development of tools to measure single-cell heterogeneity has lagged due to difficulties in manipulating and culturing single cells. Here, we describe a single-cell culture and phenotyping platform that employs a starburst microfluidic network and automatic liquid handling system to capture single cells for long-term culture and multi-dimensional analysis and quantify their clonal properties via their surface biomarker and secreted cytokine/growth factor profiles. Studies performed on this platform found that cells derived from single-cell cultures maintained phenotypic equilibria similar to their parental populations. Single-cell cultures exposed to chemotherapeutic drugs stochastically disrupted this balance to favor stem-like cells. They had enhanced expression of mRNAs and secreted factors associated with cell signaling, survival, and differentiation. This single-cell analysis approach can be extended to analyze more complex phenotypes and screen responses to therapeutic targets.
9.Ablation of macrophage transcriptional factor FoxO1 protects against ischemia-reperfusion injury-induced acute kidney injury.
Yao HE ; Xue YANG ; Chenyu ZHANG ; Min DENG ; Bin TU ; Qian LIU ; Jiaying CAI ; Ying ZHANG ; Li SU ; Zhiwen YANG ; Hongfeng XU ; Zhongyuan ZHENG ; Qun MA ; Xi WANG ; Xuejun LI ; Linlin LI ; Long ZHANG ; Yongzhuo HUANG ; Lu TIE
Acta Pharmaceutica Sinica B 2025;15(6):3107-3124
Acute kidney injury (AKI) has high morbidity and mortality, but effective clinical drugs and management are lacking. Previous studies have suggested that macrophages play a crucial role in the inflammatory response to AKI and may serve as potential therapeutic targets. Emerging evidence has highlighted the importance of forkhead box protein O1 (FoxO1) in mediating macrophage activation and polarization in various diseases, but the specific mechanisms by which FoxO1 regulates macrophages during AKI remain unclear. The present study aimed to investigate the role of FoxO1 in macrophages in the pathogenesis of AKI. We observed a significant upregulation of FoxO1 in kidney macrophages following ischemia-reperfusion (I/R) injury. Additionally, our findings demonstrated that the administration of FoxO1 inhibitor AS1842856-encapsulated liposome (AS-Lipo), mainly acting on macrophages, effectively mitigated renal injury induced by I/R injury in mice. By generating myeloid-specific FoxO1-knockout mice, we further observed that the deficiency of FoxO1 in myeloid cells protected against I/R injury-induced AKI. Furthermore, our study provided evidence of FoxO1's pivotal role in macrophage chemotaxis, inflammation, and migration. Moreover, the impact of FoxO1 on the regulation of macrophage migration was mediated through RhoA guanine nucleotide exchange factor 1 (ARHGEF1), indicating that ARHGEF1 may serve as a potential intermediary between FoxO1 and the activity of the RhoA pathway. Consequently, our findings propose that FoxO1 plays a crucial role as a mediator and biomarker in the context of AKI. Targeting macrophage FoxO1 pharmacologically could potentially offer a promising therapeutic approach for AKI.
10.Cytoplasmic and nuclear NFATc3 cooperatively contributes to vascular smooth muscle cell dysfunction and drives aortic aneurysm and dissection.
Xiu LIU ; Li ZHAO ; Deshen LIU ; Lingna ZHAO ; Yonghua TUO ; Qinbao PENG ; Fangze HUANG ; Zhengkun SONG ; Chuanjie NIU ; Xiaoxia HE ; Yu XU ; Jun WAN ; Peng ZHU ; Zhengyang JIAN ; Jiawei GUO ; Yingying LIU ; Jun LU ; Sijia LIANG ; Shaoyi ZHENG
Acta Pharmaceutica Sinica B 2025;15(7):3663-3684
This study investigated the role of the nuclear factor of activated T cells c3 (NFATc3) in vascular smooth muscle cells (VSMCs) during aortic aneurysm and dissection (AAD) progression and the underlying molecular mechanisms. Cytoplasmic and nuclear NFATc3 levels were elevated in human and mouse AAD. VSMC-NFATc3 deletion reduced thoracic AAD (TAAD) and abdominal aortic aneurysm (AAA) progression in mice, contrary to VSMC-NFATc3 overexpression. VSMC-NFATc3 deletion reduced extracellular matrix (ECM) degradation and maintained the VSMC contractile phenotype. Nuclear NFATc3 targeted and transcriptionally upregulated matrix metalloproteinase 9 (MMP9) and MMP2, promoting ECM degradation and AAD development. NFATc3 promoted VSMC phenotypic switching by binding to eukaryotic elongation factor 2 (eEF2) and inhibiting its phosphorylation in the VSMC cytoplasm. Restoring eEF2 reversed the beneficial effects in VSMC-specific NFATc3-knockout mice. Cabamiquine-targets eEF2 and inhibits protein synthesis-inhibited AAD development and progression in VSMC-NFATc3-overexpressing mice. VSMC-NFATc3 promoted VSMC switch and ECM degradation while exacerbating AAD development, making it a novel potential therapeutic target for preventing and treating AAD.

Result Analysis
Print
Save
E-mail