1.Banxia Xiexin Tang Ameliorates Cognitive Dysfunction in Rat Model of Vascular Dementia via AGE/RAGE Pathway
Shuzhi LIANG ; Zhongmin ZHAO ; Suyu HOU ; Dandan LUO ; Yan ZHANG ; Xijian LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):10-21
ObjectiveTo explore the mechanism by which Banxia Xiexin Tang (BXT) regulates the advanced glycation end products (AGE)/receptor for advanced glycation end products (RAGE) signaling pathway to reduce neuroinflammatory responses and ameliorate cognitive dysfunction in the rat model of vascular dementia (VD). MethodsThe components of BXT were detected by ultra performance liquid chromatography-quadrupole -orbitrap-tandem mass spectrometry(UPLC-Q-Orbitrap-MS/MS), and the core components and key action pathways were screened out by network pharmacology and molecular docking. Sixty SPF-grade male SD rats were randomly allocated into the sham and modeling groups by the random number table method. The VD model was replicated by the modified bilateral occlusion of the common carotid arteries (2-VO) method. The successfully modeled rats were randomly allocated into the model, low-, medium-, and high-dose (3.748 5, 7.497, 14.994 g·kg-1) BXT (BXT-L, BXT-M, and BXT-H), and nimodipine (NMP, 0.002 7 g·kg-1) groups according to the random number table method. The rats in the drug intervention groups were administrated with corresponding drugs by gavage, and the sham and model groups received the same amount of normal saline for 14 consecutive days. The Morris water maze, Y-maze, and new object recognition experiments were conducted to evaluate the cognitive dysfunction of rats. Hematoxylin-eosin (HE) staining was used to evaluate the histopathological changes of the hippocampal tissue in rats. The mRNA levels of AGE, RAGE, and phosphorylated nuclear factor-kappa B p65 (p-NF-κB p65) in the hippocampal tissue of rats were determined by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). The expression of related proteins in the AGE/RAGE pathway in the hippocampal tissue of rats was determined by Western blot and immunohistochemistry (IHC). The levels of neurotransmitters and inflammatory mediators in the rat serum were measured by enzyme-linked immunosorbent assay (ELISA). ResultsThe chemical components of BXT were detected by UPLC-Q-Orbitrap-MS/MS. Network pharmacology and molecular docking identified the AGE/RAGE pathway as the key pathway. The results of the water maze, Y maze, and novel object recognition tests showed that compared with the sham group, the model group demonstrated prolonged successful latency and decreases in number of platform crossings, alternation rate, number of entries into the new arm, preference index, and discrimination index (P0.01). Compared with the model group, the BXT-H and BXT-M groups showed shortened successful latency (P0.01) and increases in number of platform crossings (P0.05), alternation rate (P0.01), number of entries into the new arm (P0.05), preference index (P0.01), and discrimination index (P0.01). HE results showed that compared with the sham group, the cells of model rats were loosely and disorderly arranged, and the nuclei were condensed. Compared with the model group, the pathological changes of the hippocampus in the BXT group were mitigated. Real-time PCR results showed that compared with the sham group, the model group presented up-regulated mRNA levels of AGE, RAGE, and p-NF-κB p65 in the hippocampus (P0.01), and compared with the model group, the BXT-H and BXT-M groups showcased down-regulated mRNA levels of AGE, RAGE, and p-NF-κB p65 (P0.01). Western blot results showed that compared with the sham group, the model group presented up-regulated expression of AGE, RAGE, p-NF-κB p65, and tumor necrosis factor-α (TNF-α) (P0.05), and compared with the model group, the BXT-H group presented down-regulated expression of AGE, RAGE, p-NF-κB p65, and TNF-α (P0.05). IHC results showed that compared with the sham group, the model group had increased expression of RAGE (P0.01), and compared with the model group, the BXT-H and BXT-M groups had reduced expression of RAGE (P0.01). ELISA results showed that compared with the sham group, the model group exhibited elevated levels of TNF-α and Interleukin-1β (IL-1β) and declined levels of acetylcholine (ACh) and dopamine (DA) in the serum (P0.01). Compared with the model group, the BXT-L, BXT-M, and BXT-H groups showed lowered levels of TNF-α and IL-1β in the serum (P0.05) and elevated levels of ACh and DA (P0.05). ConclusionBXT may ameliorate cognitive dysfunction in the rat model of VD by down-regulating the AGE/RAGE signaling pathway, reducing neuroinflammatory responses, and regulating neurotransmitter levels.
2.Banxia Xiexin Tang Ameliorates Cognitive Dysfunction in Rat Model of Vascular Dementia via AGE/RAGE Pathway
Shuzhi LIANG ; Zhongmin ZHAO ; Suyu HOU ; Dandan LUO ; Yan ZHANG ; Xijian LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):10-21
ObjectiveTo explore the mechanism by which Banxia Xiexin Tang (BXT) regulates the advanced glycation end products (AGE)/receptor for advanced glycation end products (RAGE) signaling pathway to reduce neuroinflammatory responses and ameliorate cognitive dysfunction in the rat model of vascular dementia (VD). MethodsThe components of BXT were detected by ultra performance liquid chromatography-quadrupole -orbitrap-tandem mass spectrometry(UPLC-Q-Orbitrap-MS/MS), and the core components and key action pathways were screened out by network pharmacology and molecular docking. Sixty SPF-grade male SD rats were randomly allocated into the sham and modeling groups by the random number table method. The VD model was replicated by the modified bilateral occlusion of the common carotid arteries (2-VO) method. The successfully modeled rats were randomly allocated into the model, low-, medium-, and high-dose (3.748 5, 7.497, 14.994 g·kg-1) BXT (BXT-L, BXT-M, and BXT-H), and nimodipine (NMP, 0.002 7 g·kg-1) groups according to the random number table method. The rats in the drug intervention groups were administrated with corresponding drugs by gavage, and the sham and model groups received the same amount of normal saline for 14 consecutive days. The Morris water maze, Y-maze, and new object recognition experiments were conducted to evaluate the cognitive dysfunction of rats. Hematoxylin-eosin (HE) staining was used to evaluate the histopathological changes of the hippocampal tissue in rats. The mRNA levels of AGE, RAGE, and phosphorylated nuclear factor-kappa B p65 (p-NF-κB p65) in the hippocampal tissue of rats were determined by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). The expression of related proteins in the AGE/RAGE pathway in the hippocampal tissue of rats was determined by Western blot and immunohistochemistry (IHC). The levels of neurotransmitters and inflammatory mediators in the rat serum were measured by enzyme-linked immunosorbent assay (ELISA). ResultsThe chemical components of BXT were detected by UPLC-Q-Orbitrap-MS/MS. Network pharmacology and molecular docking identified the AGE/RAGE pathway as the key pathway. The results of the water maze, Y maze, and novel object recognition tests showed that compared with the sham group, the model group demonstrated prolonged successful latency and decreases in number of platform crossings, alternation rate, number of entries into the new arm, preference index, and discrimination index (P<0.01). Compared with the model group, the BXT-H and BXT-M groups showed shortened successful latency (P<0.01) and increases in number of platform crossings (P<0.05), alternation rate (P<0.01), number of entries into the new arm (P<0.05), preference index (P<0.01), and discrimination index (P<0.01). HE results showed that compared with the sham group, the cells of model rats were loosely and disorderly arranged, and the nuclei were condensed. Compared with the model group, the pathological changes of the hippocampus in the BXT group were mitigated. Real-time PCR results showed that compared with the sham group, the model group presented up-regulated mRNA levels of AGE, RAGE, and p-NF-κB p65 in the hippocampus (P<0.01), and compared with the model group, the BXT-H and BXT-M groups showcased down-regulated mRNA levels of AGE, RAGE, and p-NF-κB p65 (P<0.01). Western blot results showed that compared with the sham group, the model group presented up-regulated expression of AGE, RAGE, p-NF-κB p65, and tumor necrosis factor-α (TNF-α) (P<0.05), and compared with the model group, the BXT-H group presented down-regulated expression of AGE, RAGE, p-NF-κB p65, and TNF-α (P<0.05). IHC results showed that compared with the sham group, the model group had increased expression of RAGE (P<0.01), and compared with the model group, the BXT-H and BXT-M groups had reduced expression of RAGE (P<0.01). ELISA results showed that compared with the sham group, the model group exhibited elevated levels of TNF-α and Interleukin-1β (IL-1β) and declined levels of acetylcholine (ACh) and dopamine (DA) in the serum (P<0.01). Compared with the model group, the BXT-L, BXT-M, and BXT-H groups showed lowered levels of TNF-α and IL-1β in the serum (P<0.05) and elevated levels of ACh and DA (P<0.05). ConclusionBXT may ameliorate cognitive dysfunction in the rat model of VD by down-regulating the AGE/RAGE signaling pathway, reducing neuroinflammatory responses, and regulating neurotransmitter levels.
3.OpenSim-based prediction of lower-limb biomechanical behavior in adolescents with plantarflexor weakness
Enhong FU ; Hang YANG ; Cheng LIANG ; Xiaogang ZHANG ; Yali ZHANG ; Zhongmin JIN
Chinese Journal of Tissue Engineering Research 2025;29(9):1789-1795
BACKGROUND:The plantarflexor weakness is a common muscle defect in patients with spastic cerebral palsy and Charcot-Marie-Tooth,which clinically manifests abnormal gaits,and the relationship between plantarflexor weakness and abnormal gaits is unclear. OBJECTIVE:To explore the biomechanical behavior of the lower limb under the action of a single factor of plantarflexor weakness to reveal the mechanism of abnormal gait induced by plantarflexor weakness and to provide guidance for the rehabilitation training of patients with plantarflexor weakness. METHODS:A predictive framework of musculoskeletal multibody dynamics in the sagittal plane was established based on OpenSim Moco to predict lower limb joint angles and muscle activation changes during walking in normal subjects.The validity of the framework was verified by combining the inverse kinematics and electromyogram activation time of the experimental data.Reduced isometric muscle forces were used to model plantarflexor weakness and to compare predicted lower extremity joint angles,joint moments,and muscle energy expenditure with normal subjects to analyze the effects of plantarflexor weakness on lower extremity biomechanics. RESULTS AND CONCLUSION:(1)The Moco-based prediction framework realistically predicted the biomechanical changes of the lower limbs during walking in normal subjects(joint angles:normalized correlation coefficient≥0.73,root mean square error≤7.10°).(2)The musculoskeletal model used a small stride support phase to increase the"heel-walking"gait during plantarflexor weakness.When the plantarflexor weakness reached 80%,the muscle energy expenditure was 5.691 4 J/kg/m,and the maximum activation levels of the gastrocnemius and soleus muscles were 0.72 and 0.53,which might cause the plantarflexor weakness patients to be more prone to fatigue when walking.(3)Muscle energy expenditure was significantly higher when the weakness of plantarflexors exceeded 40%,and the joint angles and moments of the lower limbs deteriorated significantly when the weakness of plantarflexors exceeded 60%,suggesting that there may be a"threshold"for the effect of plantarflexor weakness on gait,which may correspond to the point at which health care professionals should intervene in the clinical setting.
4.Artificial intelligence-based systematic study on the multidimensional pharmacological activity and molecular mechanism of the active ingredients of Artemisia argyi
Hongrong ZHANG ; Qi ZOU ; Zhongmin MA ; Zhaohui FANG
Journal of China Pharmaceutical University 2025;56(3):358-367
To investigate the pharmacological activities and potential mechanisms of action of the active components in Artemisia argyi with artificial intelligence technology, a search was conducted in the HIT, TCMSP, and TCMIO databases, obtaining 199 active components of A. argyi. A comprehensive set of algorithms, including KNN, MLP, RF, SVM, and models based on Lipinski’s and Veber’s rules, was employed to predict the toxicity and oral bioavailability of A. argyi compounds, identifying 14 components that are non-toxic and have good oral bioavailability. The synthetic accessibility score (SAscore) model was used to analyze the synthetic accessibility of the 14 components mentioned above, and molecular segments were fragmented using BRICS and RECAP algorithms. Mining of the STP and PM databases yielded 406 target proteins for the core components of A. argyi, and Cytoscape was used to screen out 5 core targets: SRC, EGFR, PTPN11, HRAS, and PDGFRB. GO and KEGG enrichment analyses indicated that the core targets were involved in 808 GO enrichment analysis entries and 71 signaling pathways, including EGFR tyrosine kinase inhibitor resistance, gap junction, phospholipase D, and JAK/STAT. Molecular docking results showed that active compounds of A. argyi have a good binding affinity with proteins SRC, EGFR, PTPN11, and HRAS. Cellular experiments have confirmed that ledol, an active component of A. argyi, can promote the proliferation of HUVEC cells within a certain concentration range and can increase the expression of EGFR protein. This study reveals the pharmacological characteristics and potential molecular mechanisms of the active components of A. argyi and lays a solid scientific foundation for its medicinal development.
6.Shuxuetong Inhibits Bim-dependent Apoptosis of Cerebellar Granule Neurons
Shenhao PAN ; Dongfang CAO ; Fanyi ZHAO ; Sijie ZHAO ; Chenghao ZHANG ; Jianfeng LIANG ; Jianwei WU ; Zhongmin YUAN
Journal of Sun Yat-sen University(Medical Sciences) 2024;45(4):549-556
[Objective]To investigate the effect and mechanism of Shuxuetong and its main component hirudin on the apoptosis of cerebellar granule neurons(CGNs)in Sprague-Dawley(SD)rats.[Methods]CGNs incubated in vitro for 7 days were divided into survival control group or 25 K group(cultured in medium containing 25 mmol/L KCL)and apopto-sis group or 5 K group(cultured in medium containing 5 mmol/L KCL).CGNs were separately treated with proportionally diluted and different concentrations of Shuxuetong(1/50,1/40,1/30,1/20 and 1/10)and the corresponding different con-centrations of hirudin(2,2.5,3.34,5 and 10 U/mL).Hoechst staining was performed to analyze the apoptosis.Western blot was used to detect the expression levels of Cleaved Caspase-3,Bim and VEGF.[Results]Hoechst staining showed that 5 K group had a higher apoptosis rate than 25 K group.In 25 K group,there was no significant change in the apoptosis rate between neurons treated with different concentrations of Shuxuetong and hirudin,but significant changes was found in 5 K group and the higher the concentration,the lower the apoptosis rate.Western blot results revealed that,compared with control neurons in 5 K group,Shuxuetong injection and hirudin treatments resulted in a decrease of Cleaved Caspase-3 and Bim expression,but an increase of VEGF protein.[Conclusions]Shuxuetong and its main component hirudin inhibits the apoptosis of CGNs through suppressing proapoptotic BH3-only protein Bim.
7.Application of three dimensional printed personalized guide plate assisted arthroscopic ankle arthrodesis in the treatment of ankle arthritis
Guangyi LI ; Cheng WANG ; Jiazheng WANG ; Chenglin WU ; Jieyuan ZHANG ; Jian ZOU ; Jianfeng XUE ; Yan SU ; Guohua MEI ; Zhongmin SHI ; Xin MA
Chinese Journal of Surgery 2024;62(6):572-580
Objective:To compare the efficacy of conventional open ankle fusion and three dimensional(3D) printed guide plate assisted arthroscopic ankle fusion.Methods:A retrospective cohort study was performed on 256 patients with advanced traumatic ankle arthritis, who were admitted to the Department of Orthopaedics, Shanghai Sixth People′s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine from May 2018 to February 2023 and underwent ankle fusion procedures. The study cohort comprised 119 males and 137 females, with an age of (59.6±9.5) years (range: 37 to 83 years). Among them, 175 cases underwent internal fixation with plates and screws (58 cases through the combined medial and lateral approach, and 117 cases through the simple lateral approach), 48 cases underwent internal fixation with screws through the anterior approach (conventional open group), and 33 cases underwent minimally invasive arthroscopic ankle fusion assisted by 3D printed guide plate (3D printed guide plate arthroscopy group). Propensity score matching was employed to achieve a 1∶1 match(caliper value=0.02) between the baseline characteristics of patients in the 3D printed guide plate arthroscopy group and the conventional open group. Perioperative and follow-up data between the two groups were compared using the t-test, Mann-Whitney U test, Wilcoxon signed rank test, χ2 test or corrected χ2 test as appropriate. Results:Matching was successfully achieved with 20 cases in both the 3D printed guide plate arthroscopy group and the conventional open group, and there were no statistically significant differences in baseline characteristics between the two groups (all P>0.05). The operation time in the 3D printed guide plate arthroscopy group was significantly longer than that in the conventional open group ((88.9±5.6) minutes vs. (77.9±11.7) minutes; t=-2.392, P=0.022), while the frequency of intraoperative fluoroscopies ((1.7±0.8) times vs. (5.2±1.2) times; t=10.604, P<0.01) and length of hospitalization ((5.5±0.9) days vs. (6.4±1.5) days; t=2.480, P=0.018) were significantly lower in the 3D printed guide plate arthroscopy group compared to the conventional open group. The fusion rate was 95.0% (19/20) in the 3D printed guide plate arthroscopy group and 85.0% (17/20) in the conventional open group, with no statistically significant difference between the two groups ( χ2=0.278, P=0.598). The fusion time was (12.1±2.0) weeks in the conventional open group and (11.1±1.7) weeks in the 3D printed guide plate arthroscopy group, with no statistically significant difference between the two groups ( t=1.607, P=0.116). At the final follow-up, the American Orthopedic Foot and Ankle Society ankle hindfoot scale was (72.6±5.5)points in the 3D printed guide plate arthroscopy group and (70.5±5.8)points in the conventional open group, with no statistically significant difference between the two groups ( t=-1.003, P=0.322). The pain visual analogue score of the 3D printed guide plate arthroscopy group was ( M(IQR)) 1.50 (1.00) points, lower than that of the conventional open group by 3.00 (1.00) points, with statistically significant differences ( Z=-3.937, P<0.01). There was no significant difference in complication rate between the conventional open group and the 3D printed guide plate arthroscopy group (25.0%(5/20) vs. 5.0%(1/20), χ2=1.765, P=0.184). Conclusion:3D printed guide plate assisted arthroscopic ankle fusion exhibited several advantages, including reduced frequency of fluoroscopies, alleviation of postoperative pain, and decreased complications and length of hospitalization.
8.Application of three dimensional printed personalized guide plate assisted arthroscopic ankle arthrodesis in the treatment of ankle arthritis
Guangyi LI ; Cheng WANG ; Jiazheng WANG ; Chenglin WU ; Jieyuan ZHANG ; Jian ZOU ; Jianfeng XUE ; Yan SU ; Guohua MEI ; Zhongmin SHI ; Xin MA
Chinese Journal of Surgery 2024;62(6):572-580
Objective:To compare the efficacy of conventional open ankle fusion and three dimensional(3D) printed guide plate assisted arthroscopic ankle fusion.Methods:A retrospective cohort study was performed on 256 patients with advanced traumatic ankle arthritis, who were admitted to the Department of Orthopaedics, Shanghai Sixth People′s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine from May 2018 to February 2023 and underwent ankle fusion procedures. The study cohort comprised 119 males and 137 females, with an age of (59.6±9.5) years (range: 37 to 83 years). Among them, 175 cases underwent internal fixation with plates and screws (58 cases through the combined medial and lateral approach, and 117 cases through the simple lateral approach), 48 cases underwent internal fixation with screws through the anterior approach (conventional open group), and 33 cases underwent minimally invasive arthroscopic ankle fusion assisted by 3D printed guide plate (3D printed guide plate arthroscopy group). Propensity score matching was employed to achieve a 1∶1 match(caliper value=0.02) between the baseline characteristics of patients in the 3D printed guide plate arthroscopy group and the conventional open group. Perioperative and follow-up data between the two groups were compared using the t-test, Mann-Whitney U test, Wilcoxon signed rank test, χ2 test or corrected χ2 test as appropriate. Results:Matching was successfully achieved with 20 cases in both the 3D printed guide plate arthroscopy group and the conventional open group, and there were no statistically significant differences in baseline characteristics between the two groups (all P>0.05). The operation time in the 3D printed guide plate arthroscopy group was significantly longer than that in the conventional open group ((88.9±5.6) minutes vs. (77.9±11.7) minutes; t=-2.392, P=0.022), while the frequency of intraoperative fluoroscopies ((1.7±0.8) times vs. (5.2±1.2) times; t=10.604, P<0.01) and length of hospitalization ((5.5±0.9) days vs. (6.4±1.5) days; t=2.480, P=0.018) were significantly lower in the 3D printed guide plate arthroscopy group compared to the conventional open group. The fusion rate was 95.0% (19/20) in the 3D printed guide plate arthroscopy group and 85.0% (17/20) in the conventional open group, with no statistically significant difference between the two groups ( χ2=0.278, P=0.598). The fusion time was (12.1±2.0) weeks in the conventional open group and (11.1±1.7) weeks in the 3D printed guide plate arthroscopy group, with no statistically significant difference between the two groups ( t=1.607, P=0.116). At the final follow-up, the American Orthopedic Foot and Ankle Society ankle hindfoot scale was (72.6±5.5)points in the 3D printed guide plate arthroscopy group and (70.5±5.8)points in the conventional open group, with no statistically significant difference between the two groups ( t=-1.003, P=0.322). The pain visual analogue score of the 3D printed guide plate arthroscopy group was ( M(IQR)) 1.50 (1.00) points, lower than that of the conventional open group by 3.00 (1.00) points, with statistically significant differences ( Z=-3.937, P<0.01). There was no significant difference in complication rate between the conventional open group and the 3D printed guide plate arthroscopy group (25.0%(5/20) vs. 5.0%(1/20), χ2=1.765, P=0.184). Conclusion:3D printed guide plate assisted arthroscopic ankle fusion exhibited several advantages, including reduced frequency of fluoroscopies, alleviation of postoperative pain, and decreased complications and length of hospitalization.
9.Human umbilical cord mesenchymal stem cells attenuate diabetic nephropathy through the IGF1R-CHK2-p53 signalling axis in male rats with type 2 diabetes mellitus
ZHANG HAO ; WANG XINSHU ; HU BO ; LI PEICHENG ; ABUDUAINI YIERFAN ; ZHAO HONGMEI ; JIEENSIHAN AYINAER ; CHEN XISHUANG ; WANG SHIYU ; GUO NUOJIN ; YUAN JIAN ; LI YUNHUI ; LI LEI ; YANG YUNTONG ; LIU ZHONGMIN ; TANG ZHAOSHENG ; WANG HUA
Journal of Zhejiang University. Science. B 2024;25(7):568-580,中插1-中插3
Diabetes mellitus(DM)is a disease syndrome characterized by chronic hyperglycaemia.A long-term high-glucose environment leads to reactive oxygen species(ROS)production and nuclear DNA damage.Human umbilical cord mesenchymal stem cell(HUcMSC)infusion induces significant antidiabetic effects in type 2 diabetes mellitus(T2DM)rats.Insulin-like growth factor 1(IGF1)receptor(IGF1R)is important in promoting glucose metabolism in diabetes;however,the mechanism by which HUcMSC can treat diabetes through IGF1R and DNA damage repair remains unclear.In this study,a DM rat model was induced with high-fat diet feeding and streptozotocin(STZ)administration and rats were infused four times with HUcMSC.Blood glucose,interleukin-6(IL-6),IL-10,glomerular basement membrane,and renal function were examined.Proteins that interacted with IGF1R were determined through coimmunoprecipitation assays.The expression of IGF1R,phosphorylated checkpoint kinase 2(p-CHK2),and phosphorylated protein 53(p-p53)was examined using immunohistochemistry(IHC)and western blot analysis.Enzyme-linked immunosorbent assay(ELISA)was used to determine the serum levels of 8-hydroxydeoxyguanosine(8-OHdG).Flow cytometry experiments were used to detect the surface markers of HUcMSC.The identification of the morphology and phenotype of HUcMSC was performed by way of oil red"O"staining and Alizarin red staining.DM rats exhibited abnormal blood glucose and IL-6/10 levels and renal function changes in the glomerular basement membrane,increased the expression of IGF1 and IGF1R.IGF1R interacted with CHK2,and the expression of p-CHK2 was significantly decreased in IGF1R-knockdown cells.When cisplatin was used to induce DNA damage,the expression of p-CHK2 was higher than that in the IGF1R-knockdown group without cisplatin treatment.HUcMSC infusion ameliorated abnormalities and preserved kidney structure and function in DM rats.The expression of IGF1,IGF1R,p-CHK2,and p-p53,and the level of 8-OHdG in the DM group increased significantly compared with those in the control group,and decreased after HUcMSC treatment.Our results suggested that IGF1R could interact with CHK2 and mediate DNA damage.HUcMSC infusion protected against kidney injury in DM rats.The underlying mechanisms may include HUcMSC-mediated enhancement of diabetes treatment via the IGF1R-CHK2-p53 signalling pathway.
10.Construction of micropapillary lung adenocarcinoma organoids and screening of targeted drugs
Zhongmin JIANG ; Chunyan ZHANG ; Min LIU ; Jie ZHENG ; Yanxia LI ; Qingcuo REN ; Wei MENG ; Xiaozhi LIU
Tianjin Medical Journal 2024;52(1):22-27
Objective To establish a culture method for micropapillary lung adenocarcinoma organoids and conduct targeted drug screening.Methods Organoids were extracted and cultured from a surgical tissue sample of a patient diagnosed with micropapillary lung adenocarcinoma,and the growth of lung cancer organoids was observed and recorded dynamically.The morphological and gene expression characteristics of tumor cells between lung cancer organoids and parental tissue were compared using hematoxylin eosin(HE)staining and immunohistochemical methods.Real time fluorescence quantitative polynucleotide chain reaction(qRT-PCR)method was used to detect gene mutations in lung cancer parental tissue and organoids.Finally,based on results of genetic testing,targeted drugs were selected and their therapeutic effects were verified.Results We have successfully cultured spherical organoids from micropapillary lung adenocarcinoma tissue,which can be passaged for at least 3 generations.HE staining results showed that the morphology of tumor cells in organoids was roughly consistent with that of parental tissue.The immunohistochemical results showed that the protein expression levels of various genes in lung cancer organoids and parental tissue were roughly the same.Results of gene mutation analysis showed that the mutated genes in lung cancer parental tissue and organoids were consistent,both reflecting RET fusion.The screening results of targeted drugs based on lung cancer organoids showed that vandertinib had the best anti-tumor effect in vitro.Conclusion Drug screening experiments based on micropapillary lung adenocarcinoma organoids can screen highly efficient targeted drugs in a short period of time,which may benefit patients with micropapillary lung adenocarcinoma.

Result Analysis
Print
Save
E-mail