1.Advancements in the regulatory effects and mechanisms of the immune metabolite itaconate in diseases.
Zhongkun CHENG ; Jingxian ZHAO ; Yanyan LIU ; Ling XU ; Guangwei ZHAO ; Xingwei NI ; Xiaowei YANG
Chinese Journal of Biotechnology 2024;40(11):3888-3901
Itaconate is a pivotal intermediate metabolite in the tricarboxylic acid (TCA) cycle of immune cells. It is produced by decarboxylation of cis-aconitic acid under the catalysis of aconitate decarboxylase 1 (ACOD1), which is encoded by the immune response gene 1 (IRG1). Itaconate has become a focal point of research on immunometabolism. Studies have demonstrated that itaconate plays a crucial role in diseases by regulating inflammation, remodeling cell metabolism, and participating in epigenetic regulation. This paper reviewed the research progress in itaconnate from its chemical structure, regulatory effects on different diseases, and mechanisms, proposes the future research directions, aiming to provide a theoretical basis for the development of itaconate-related drugs.
Humans
;
Succinates/metabolism*
;
Carboxy-Lyases/genetics*
;
Inflammation/metabolism*
;
Citric Acid Cycle
;
Animals
;
Epigenesis, Genetic
;
Neoplasms/immunology*
2.Advances in epigenetic regulation of the dioxygenase TET1.
Ling XU ; Zhongkun CHENG ; Jingxian ZHAO ; Yanyan LIU ; Yongju ZHAO ; Xiaowei YANG
Chinese Journal of Biotechnology 2024;40(12):4351-4364
Ten-eleven translocation 1 (TET1) protein is an alpha-ketoglutaric acid (α-KG) and Fe2+-dependent dioxygenase. It plays a role in the active demethylation of DNA by hydroxylation of 5-methyl-cytosine (5-mC) to 5-hydroxymethyl-cytosine (5-hmC). Ten-eleven translocation 1 (TET1) protein is involved in maintaining genome methylation homeostasis and epigenetic regulation. Abnormally expressed TET1 and 5-mC oxidative derivatives have become potential markers in various biological and pathological processes and a research focus in the fields of embryonic development and malignant tumors. This paper introduces the structure and demethylation mechanism of TET1, reviews the research status of epigenetic regulation by TET1 in embryonic development, immune responses, stem cell regulation, cancer progression, and nervous system development, and briefs the upstream regulatory mechanism of TET1, hoping to provide new inspirations for further research in related fields.
Proto-Oncogene Proteins/genetics*
;
Epigenesis, Genetic
;
Humans
;
DNA-Binding Proteins/metabolism*
;
DNA Methylation
;
Mixed Function Oxygenases/metabolism*
;
5-Methylcytosine/analogs & derivatives*
;
Animals
;
Embryonic Development/genetics*
;
Neoplasms/genetics*
;
Dioxygenases/metabolism*
3.Study of the Preparation Technique of Dipyridamole Microcapsules With Orthogonal Design
Zhongkun LI ; Chongjing WANG ; Heng WANG ; Bing LI ; Lanying CHENG ; Yingjun HE
China Pharmacy 1991;0(02):-
OBJECTIVE:To study the preparation technique of dipyridamole microcapsules METHODS:Using the method of orthogonal design,the preparation technique of dipyridamole microcapsules was optimized RESULTS:The results showed that with the simple agglutination method,the encapsulation rate was significantly related to the ratio of coating material to dipyridamole of preparation(P

Result Analysis
Print
Save
E-mail