1.Practice and thinking of multi-dimensional teaching of "Principle of Biotechnology" under the "Double First-Class" initiative.
Haiyan ZHOU ; Zhongce HU ; Xue CAI ; Zhiqiang LIU ; Liqun JIN ; Yuguo ZHENG
Chinese Journal of Biotechnology 2024;40(11):4288-4300
The Principle of Biotechnology is a compulsory course for undergraduates majoring in bioengineering at Zhejiang University of Technology. In response to the "Double First-Class" initiative and in order to improve the teaching effect of this course and the quality of talent training, we reformed the teaching of Principle of Biotechnology, the core course in bioengineering. Specifically, we reorganized the teaching contents, improved the process management of teaching and learning, and implemented multi-dimensional teaching practice. These measures improved teaching quality and promoted the achievement of training goals, which was of great significance for developing "First-Class" disciplines.
Biotechnology/education*
;
Teaching
;
China
;
Curriculum
;
Bioengineering/education*
;
Universities
2.Microbial production of S-adenosyl-l-methionine: a review.
Meijing LI ; Zheyan MI ; Jinhao WANG ; Zhongce HU ; Haibin QIN ; Yuanshan WANG ; Yuguo ZHENG
Chinese Journal of Biotechnology 2023;39(6):2248-2264
S-adenosyl-l-methionine (SAM) is ubiquitous in living organisms and plays important roles in transmethylation, transsulfuration and transamination in organisms. Due to its important physiological functions, production of SAM has attracted increasing attentions. Currently, researches on SAM production mainly focus on microbial fermentation, which is more cost-effective than that of the chemical synthesis and the enzyme catalysis, thus easier to achieve commercial production. With the rapid growth in SAM demand, interests in improving SAM production by developing SAM hyper-producing microorganisms aroused. The main strategies for improving SAM productivity of microorganisms include conventional breeding and metabolic engineering. This review summarizes the recent research progress in improving microbial SAM productivity to facilitate further improving SAM productivity. The bottlenecks in SAM biosynthesis and the solutions were also addressed.
S-Adenosylmethionine/metabolism*
;
Plant Breeding
;
Fermentation
;
Metabolic Engineering
3.Progress in metabolic engineering of microbial production of 1,3-dihydroxyacetone.
Lihui SUN ; Zhongce HU ; Yuguo ZHENG ; Yinchu SHEN
Chinese Journal of Biotechnology 2010;26(9):1218-1224
1,3-Dihydroxyacetone is widely used in cosmetics, medicines and food products. We reviewed the recent progress in metabolic pathways, key enzymes, as well as metabolic engineering for microbial production of 1,3-dihydroxyacetone. We addressed the research trend to increase yield of 1,3-dihydroxyacetone by improving the activity of glycerol dehydrogenase with genetic engineering, and regulating of fermentation process based on metabolic characteristic of the strain.
Dihydroxyacetone
;
biosynthesis
;
Fermentation
;
Genetic Engineering
;
methods
;
Gluconobacter oxydans
;
genetics
;
metabolism
;
Industrial Microbiology
;
methods
;
Metabolic Engineering
;
methods
;
Sugar Alcohol Dehydrogenases
;
metabolism

Result Analysis
Print
Save
E-mail