1.Phlorizin Ameliorates Glucose and Lipid Metabolism Disorders in T2DM Rats by Modulating IRS-1/PI3K/Akt Signaling Pathway
Nuer AILI ; Qingyu CAO ; Huan LIU ; Junwei HE ; Weihong ZHONG ; Lan CAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):139-148
ObjectiveTo observe the pharmacodynamic efficacy of phlorizin in improving hepatic glycolipid metabolism disorders in type 2 diabetic mellitus (T2DM) rats and to explore its mechanism of action based on the insulin receptor substrate-1 (IRS-1)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. MethodsA high-fat diet and streptozotocin (STZ) were used to establish T2DM rat models. The rats were randomly assigned into six groups: the blank control group, model group, metformin group (300 mg·kg-1), and phlorizin high-dose (100 mg·kg-1) and low-dose groups (25 mg·kg-1). The rats were given intragastric administration for 6 weeks. The changes in body weight and fasting blood glucose (FBG) were observed, and the oral glucose tolerance test (OGTT) was carried out. The levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), glycated serum protein (GSP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in serum were detected by an automatic biochemical analyzer. The levels of fasting insulin (FINS), interleukin (IL)-1β, IL-6, and tumour necrosis factor (TNF)-α were detected by enzyme-linked immunosorbent assay (ELISA). The levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were detected by the biochemical assays. The pancreas index, liver index, and insulin resistance index were calculated. Hematoxylin-eosin (HE) staining was used to evaluate the pathological changes in liver and pancreatic tissues. The immunofluorescence method was used to detect the changes in insulin and glucagon in pancreatic tissue. Western blot was used to detect the expression of related proteins in the IRS-1/PI3K/Akt pathway of liver tissue and its downstream glycogen synthase kinase-3β (GSK-3β) and forkhead box transcription factor O1 (FoxO1) proteins. ResultsCompared with the blank control group, the body weight of rats in the model group continued to decrease, while the FBG level increased significantly. The area under the OGTT blood glucose curve (AUC), GSP, TC, TG, LDL-C, IL-1β, IL-6, TNF-α, MDA, pancreatic index and liver index increased significantly, while the levels of HDL-C, SOD, and FINS decreased significantly (P0.05, P0.01). Histological results showed that the pancreatic islets of rats in the model group exhibited atrophy and severe structural abnormalities. The insulin-positive β-cells decreased significantly (P0.01), while the glucagon-positive α-cells increased significantly (P0.01). Inflammatory cell infiltration and partial necrosis were observed in the liver tissues of the model group rats. The expressions of p-IRS-1/IRS-1, p-GSK-3β/GSK-3β, and p-FoxO1/FoxO1 proteins in the liver of the model group increased significantly (P0.01), while the expressions of p-PI3K/PI3K and p-Akt/Akt proteins decreased significantly (P0.01). Compared with the model group, the diabetic symptoms of rats in all administration groups were improved. The changes in body weight and FBG were close to those of the blank control group. The levels of OGTT-AUC, GSP, TC, TG, LDL-C, MDA, IL-1β, IL-6, TNF-α and the pancreatic index, liver index were obviously reduced (P0.05, P0.01), while the levels of HDL-C, SOD, and FINS obviously increased (P0.05, P0.01). The pathological changes of the pancreas and liver in rats in all treatment groups were effectively improved. The insulin-positive β-cells in the pancreas increased significantly (P0.01), while the glucagon-positive α-cells decreased significantly (P0.01). The protein expressions of p-IRS-1/IRS-1, p-GSK-3β/GSK-3β, and p-FoxO1/FoxO1 in the liver were significantly reduced (P0.01), while the protein expressions of p-PI3K/PI3K and p-Akt/Akt significantly increased (P0.01). ConclusionPhlorizin reversed the weight loss and abnormal increase of FBG in T2DM rats, improved blood lipid profiles, oxidative stress, and inflammatory levels, alleviated insulin resistance, and had certain protective effects on the liver and pancreas. The hypoglycemic mechanism may involve regulating the IRS-1/PI3K/Akt signaling pathway to inhibit the activities of GSK-3β and FoxO1, thereby promoting liver glycogen synthesis and suppressing hepatic gluconeogenesis, ultimately improving glycolipid metabolism disorders.
2.Phlorizin Ameliorates Glucose and Lipid Metabolism Disorders in T2DM Rats by Modulating IRS-1/PI3K/Akt Signaling Pathway
Nuer AILI ; Qingyu CAO ; Huan LIU ; Junwei HE ; Weihong ZHONG ; Lan CAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):139-148
ObjectiveTo observe the pharmacodynamic efficacy of phlorizin in improving hepatic glycolipid metabolism disorders in type 2 diabetic mellitus (T2DM) rats and to explore its mechanism of action based on the insulin receptor substrate-1 (IRS-1)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. MethodsA high-fat diet and streptozotocin (STZ) were used to establish T2DM rat models. The rats were randomly assigned into six groups: the blank control group, model group, metformin group (300 mg·kg-1), and phlorizin high-dose (100 mg·kg-1) and low-dose groups (25 mg·kg-1). The rats were given intragastric administration for 6 weeks. The changes in body weight and fasting blood glucose (FBG) were observed, and the oral glucose tolerance test (OGTT) was carried out. The levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), glycated serum protein (GSP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in serum were detected by an automatic biochemical analyzer. The levels of fasting insulin (FINS), interleukin (IL)-1β, IL-6, and tumour necrosis factor (TNF)-α were detected by enzyme-linked immunosorbent assay (ELISA). The levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were detected by the biochemical assays. The pancreas index, liver index, and insulin resistance index were calculated. Hematoxylin-eosin (HE) staining was used to evaluate the pathological changes in liver and pancreatic tissues. The immunofluorescence method was used to detect the changes in insulin and glucagon in pancreatic tissue. Western blot was used to detect the expression of related proteins in the IRS-1/PI3K/Akt pathway of liver tissue and its downstream glycogen synthase kinase-3β (GSK-3β) and forkhead box transcription factor O1 (FoxO1) proteins. ResultsCompared with the blank control group, the body weight of rats in the model group continued to decrease, while the FBG level increased significantly. The area under the OGTT blood glucose curve (AUC), GSP, TC, TG, LDL-C, IL-1β, IL-6, TNF-α, MDA, pancreatic index and liver index increased significantly, while the levels of HDL-C, SOD, and FINS decreased significantly (P0.05, P0.01). Histological results showed that the pancreatic islets of rats in the model group exhibited atrophy and severe structural abnormalities. The insulin-positive β-cells decreased significantly (P0.01), while the glucagon-positive α-cells increased significantly (P0.01). Inflammatory cell infiltration and partial necrosis were observed in the liver tissues of the model group rats. The expressions of p-IRS-1/IRS-1, p-GSK-3β/GSK-3β, and p-FoxO1/FoxO1 proteins in the liver of the model group increased significantly (P0.01), while the expressions of p-PI3K/PI3K and p-Akt/Akt proteins decreased significantly (P0.01). Compared with the model group, the diabetic symptoms of rats in all administration groups were improved. The changes in body weight and FBG were close to those of the blank control group. The levels of OGTT-AUC, GSP, TC, TG, LDL-C, MDA, IL-1β, IL-6, TNF-α and the pancreatic index, liver index were obviously reduced (P0.05, P0.01), while the levels of HDL-C, SOD, and FINS obviously increased (P0.05, P0.01). The pathological changes of the pancreas and liver in rats in all treatment groups were effectively improved. The insulin-positive β-cells in the pancreas increased significantly (P0.01), while the glucagon-positive α-cells decreased significantly (P0.01). The protein expressions of p-IRS-1/IRS-1, p-GSK-3β/GSK-3β, and p-FoxO1/FoxO1 in the liver were significantly reduced (P0.01), while the protein expressions of p-PI3K/PI3K and p-Akt/Akt significantly increased (P0.01). ConclusionPhlorizin reversed the weight loss and abnormal increase of FBG in T2DM rats, improved blood lipid profiles, oxidative stress, and inflammatory levels, alleviated insulin resistance, and had certain protective effects on the liver and pancreas. The hypoglycemic mechanism may involve regulating the IRS-1/PI3K/Akt signaling pathway to inhibit the activities of GSK-3β and FoxO1, thereby promoting liver glycogen synthesis and suppressing hepatic gluconeogenesis, ultimately improving glycolipid metabolism disorders.
3.Serologic characteristics of occult HBV infection in adult physical examination population in Zigong Region
Yan ZOU ; Zhi LI ; Lan WANG ; Huang ZHONG
Journal of Public Health and Preventive Medicine 2025;36(5):130-133
Objective To investigate the current status and serologic characteristics of occult HBV infection in the adult physical examination population in Zigong region. Methods A total of 126 381 patients who were examined in the physical examination center and gastroenterology department of The First People's Hospital of Zigong City from April 2023 to September 2024 were screened, and 21 615 eligible cases were included in the study. The current status of infection was analyzed and serological patterns and serological characteristics of the included individuals were compared. Results This study screened 126 381 patients, all of whom underwent serum HBsAg testing, and 21 615 patients (17.10%) underwent HBV DNA testing, of which 7 992 were HBV DNA positive (>102 IU/mL) and HBsAg negative, accounting for 36.97% of the total number of patients who underwent HBV DNA testing. Anti-HBc positivity was significantly higher than other serologic patterns, and the lowest rate of HBV DNA positivity was found in those who were positive for anti-HBc, anti-HBs and anti-HBe. The lowest male-to-female ratio (1.25:1) was found in patients with both anti-HBc, anti-HBs and anti-HBe positivity, which was significantly lower than that of patients with the other three serologic characteristics (P=0.005). There were no significant differences in age, BMI, AST, ALT, and TBiL levels among patients with different serum characteristics (all P>0.05). The HBV viral load is highest in patients with anti HBc combined with anti HBe positivity, while the HBV viral load is lowest in patients with anti HBc positivity, anti HBs positivity, and all anti HBe positivity (P<0.001). Viral genotypes were predominantly B-type, and there were differences in genotype distribution among the four groups of patients (P<0.001). Conclusion The level of occult HBV infection was high in the adult medical examination population in Zigong region, mostly characterized by anti-HBc positivity, with the lowest male-to-female ratio among patients who were positive for anti-HBc, anti-HBs, and anti-HBe, and the highest HBV viral load among patients who were positive for anti-HBc combined with anti-HBe.
4.Transzonal Projections and Follicular Development Abnormalities in Polycystic Ovary Syndrome
Di CHENG ; Yu-Hua CHEN ; Xia-Ping JIANG ; Lan-Yu LI ; Yi TAN ; Ming LI ; Zhong-Cheng MO
Progress in Biochemistry and Biophysics 2025;52(10):2499-2511
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder affecting a substantial proportion of women of reproductive age. It is frequently associated with ovulatory dysfunction, infertility, and an increased risk of chronic metabolic diseases. A hallmark pathological feature of PCOS is the arrest of follicular development, closely linked to impaired intercellular communication between the oocyte and surrounding granulosa cells. Transzonal projections (TZPs) are specialized cytoplasmic extensions derived from granulosa cells that penetrate the zona pellucida to establish direct contact with the oocyte. These structures serve as essential conduits for the transfer of metabolites, signaling molecules (e.g., cAMP, cGMP), and regulatory factors (e.g., microRNAs, growth differentiation factors), thereby maintaining meiotic arrest, facilitating metabolic cooperation, and supporting gene expression regulation in the oocyte. The proper formation and maintenance of TZPs depend on the cytoskeletal integrity of granulosa cells and the regulated expression of key connexins, particularly CX37 and CX43. Recent studies have revealed that in PCOS, TZPs exhibit significant structural and functional abnormalities. Contributing factors—such as hyperandrogenism, insulin resistance, oxidative stress, chronic inflammation, and dysregulation of critical signaling pathways (including PI3K/Akt, Wnt/β‑catenin, and MAPK/ERK)—collectively impair TZP integrity and reduce their formation. This disruption in granulosa-oocyte communication compromises oocyte quality and contributes to follicular arrest and anovulation. This review provides a comprehensive overview of TZP biology, including their formation mechanisms, molecular composition, and stage-specific dynamics during folliculogenesis. We highlight the pathological alterations in TZPs observed in PCOS and elucidate how endocrine and metabolic disturbances—particularly androgen excess and hyperinsulinemia—downregulate CX43 expression and impair gap junction function, thereby exacerbating ovarian microenvironmental dysfunction. Furthermore, we explore emerging therapeutic strategies aimed at preserving or restoring TZP integrity. Anti-androgen therapies (e.g., spironolactone, flutamide), insulin sensitizers (e.g., metformin), and GLP-1 receptor agonists (e.g., liraglutide) have shown potential in modulating connexin expression and enhancing granulosa-oocyte communication. In addition, agents such as melatonin, AMPK activators, and GDF9/BMP15 analogs may promote TZP formation and improve oocyte competence. Advanced technologies, including ovarian organoid models and CRISPR-based gene editing, offer promising platforms for studying TZP regulation and developing targeted interventions. In summary, TZPs are indispensable for maintaining follicular homeostasis, and their disruption plays a pivotal role in the pathogenesis of PCOS-related folliculogenesis failure. Targeting TZP integrity represents a promising therapeutic avenue in PCOS management and warrants further mechanistic and translational investigation.
5.Clinical practice guidelines for perioperative multimodality treatment of non-small cell lung cancer.
Wenjie JIAO ; Liang ZHAO ; Jiandong MEI ; Jia ZHONG ; Yongfeng YU ; Nan BI ; Lan ZHANG ; Lvhua WANG ; Xiaolong FU ; Jie WANG ; Shun LU ; Lunxu LIU ; Shugeng GAO
Chinese Medical Journal 2025;138(21):2702-2721
BACKGROUND:
Lung cancer is currently the most prevalent malignancy and the leading cause of cancer deaths worldwide. Although the early stage non-small cell lung cancer (NSCLC) presents a relatively good prognosis, a considerable number of lung cancer cases are still detected and diagnosed at locally advanced or late stages. Surgical treatment combined with perioperative multimodality treatment is the mainstay of treatment for locally advanced NSCLC and has been shown to improve patient survival. Following the standard methods of neoadjuvant therapy, perioperative management, postoperative adjuvant therapy, and other therapeutic strategies are important for improving patients' prognosis and quality of life. However, controversies remain over the perioperative management of NSCLC and presently consensus and standardized guidelines are lacking for addressing critical clinical issues in multimodality treatment.
METHODS:
The working group consisted of 125 multidisciplinary experts from thoracic surgery, medical oncology, radiotherapy, epidemiology, and psychology. This guideline was developed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system. The clinical questions were collected and selected based on preliminary open-ended questionnaires and subsequent discussions during the Guideline Working Group meetings. PubMed, Web of Science, Cochrane Library, Scopus, and China National Knowledge Infrastructure (CNKI) were searched for available evidence. The GRADE system was used to evaluate the quality of evidence and grade the strengths of recommendations. Finally, the recommendations were developed through a structured consensus-building process.
RESULTS:
The Guideline Development Group initially collected a total of 62 important clinical questions. After a series of consensus-building conferences, 24 clinical questions were identified and corresponding recommendations were ultimately developed, focusing on neoadjuvant therapy, perioperative management, adjuvant therapy, postoperative psychological rehabilitation, prognosis assement, and follow-up protocols for NSCLC.
CONCLUSIONS
This guideline puts forward reasonable recommendations focusing on neoadjuvant therapy, perioperative management, adjuvant therapy, postoperative psychological rehabilitation, prognosis assessment, and follow-up protocol of NSCLC. It standardizes perioperative multimodality treatment and provides guidance for clinical practice among thoracic surgeons, medical oncologists, and radiotherapists, aiming to reduce postoperative recurrence, improve patient survival, accelerate recovery, and minimize postoperative complications such as atelectasis.
Humans
;
Carcinoma, Non-Small-Cell Lung/therapy*
;
Lung Neoplasms/therapy*
;
Combined Modality Therapy
;
Perioperative Care
6.Liuwei Dihuang Pills improve chemotherapy-induced ovarian injury in mice by promoting the proliferation of female germline stem cells.
Bo JIANG ; Wen-Yan ZHANG ; Guang-di LIN ; Xiao-Qing MA ; Guo-Xia LAN ; Jia-Wen ZHONG ; Ling QIN ; Jia-Li MAI ; Xiao-Rong LI
China Journal of Chinese Materia Medica 2025;50(9):2495-2504
This study primarily investigates the effect of Liuwei Dihuang Pills on the activation and proliferation of female germline stem cells(FGSCs) in the ovaries and cortex of mice with premature ovarian failure(POF), and how it improves ovarian function. ICR mice were randomly divided into the control group, model group, Liuwei Dihuang Pills group, Liuwei Dihuang Pills double-dose group, and estradiol valerate group. A mouse model of POF was established by intraperitoneal injection of cyclophosphamide. After successful modeling, the mice were treated with Liuwei Dihuang Pills or estradiol valerate for 28 days. Vaginal smears were prepared to observe the estrous cycle and body weight. After the last administration, mice were sacrificed and sampled. Serum levels of estradiol(E_2), follicle-stimulating hormone(FSH), luteinizing hormone(LH), and anti-Müllerian hormone(AMH) were measured by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe ovarian morphology and to count follicles at all stages to evaluate ovarian function. Immunohistochemistry was used to detect the expression of mouse vasa homolog(MVH), a marker of ovarian FGSCs. Immunofluorescence staining, using co-labeling of MVH and proliferating cell nuclear antigen(PCNA), was used to detect the expression and localization of specific markers of FGSCs. Western blot was employed to assess the protein expression of MVH, octamer-binding transcription factor 4(Oct4), and PCNA in the ovaries. The results showed that compared with the control group, the model group exhibited disordered estrous cycles, decreased ovarian index, increased atretic follicles, and a reduced number of follicles at all stages. FSH and LH levels were significantly elevated, while AMH and E_2 levels were significantly reduced, indicating the success of the model. After treatment with Liuwei Dihuang Pills or estradiol valerate, hormone levels improved, the number of atretic follicles decreased, and the number of follicles at all stages increased. MVH marker protein and PCNA proliferative protein expression in ovarian tissue also increased. These results suggest that Liuwei Dihuang Pills regulate estrous cycles and hormone disorders in POF mice, promote the proliferation of FGSCs, improve follicular development in POF mice, and enhance ovarian function.
Animals
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Cell Proliferation/drug effects*
;
Mice, Inbred ICR
;
Ovary/cytology*
;
Primary Ovarian Insufficiency/genetics*
;
Follicle Stimulating Hormone/metabolism*
;
Humans
;
Anti-Mullerian Hormone/blood*
;
Antineoplastic Agents/adverse effects*
;
Luteinizing Hormone/metabolism*
;
Cyclophosphamide/adverse effects*
7.Coptidis Rhizoma-Scutellariae Radix alleviates CpG1826-induced cytokine storm secondary lung injury in mice by inhibiting mPTP/NLRP3 pyroptosis pathway.
Qing-Rui ZHONG ; Hong-Kai HUANG ; Yue-Jia LAN ; Huan WANG ; Yong ZENG ; Jia-Si WU
China Journal of Chinese Materia Medica 2025;50(15):4141-4152
This study aims to investigate the therapeutic effects of the Coptidis Rhizoma-Scutellariae Radix on cytokine storm secondary lung injury(CSSLI) induced by CpG1826 in mice, and to elucidate the potential molecular mechanisms by which its major active components, i.e., coptisine and wogonin, alleviate CSSLI by inhibiting the mitochondrial permeability transition pore(mPTP)/nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3) inflammasome pyroptosis pathway. In vivo, a mouse model of CSSLI was established by CpG1826 induction. Pulmonary edema was assessed by lung wet-to-dry weight ratio(W/D), lung injury was evaluated by hematoxylin-eosin(HE) staining, and ultrastructural changes in lung tissue were observed by transmission electron microscopy(TEM). The levels of interleukin(IL)-1β, high mobility group box 1 protein(HMGB1), IL-18, and IL-1α in bronchoalveolar lavage fluid were measured by enzyme-linked immunosorbent assay(ELISA). The results showed that the decoction of the Coptidis Rhizoma-Scutellariae Radix significantly reduced pulmonary edema, alleviated lung injury, and decreased the concentrations of related cytokines in BALF more effectively than either single herb alone, thereby improving CSSLI. In vitro, a CpG1826-induced CSSLI model was established in mouse alveolar macrophage MH-S cells. Calcein-AM quenching was used to screen for the most effective monomer components from the herb pair in inhibiting mPTP opening. Coptisine(5, 10, 20 μmol·L~(-1)) and wogonin(10, 20, 40 μmol·L~(-1)) markedly inhibited mPTP opening, with optimal effects and a clear dose-dependent pattern. These components suppressed mPTP opening, thereby reducing the release of mitochondrial DNA(mtDNA) and the accumulation of reactive oxygen species(ROS), effectively reversing the CpG1826-induced decrease in mitochondrial membrane potential(MMP). Further studies revealed that both coptisine and wogonin inhibited pyroptosis and downregulated the expression of key proteins in the NLRP3/Caspase-1/gasdermin D(GSDMD) pathway. In conclusion, the Coptidis Rhizoma-Scutellariae Radix improves CpG1826-induced CSSLI in mice, and this effect is associated with the inhibition of the mPTP/NLRP3 pyroptosis pathway, providing scientific evidence for its clinical application and further development.
Animals
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Pyroptosis/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/immunology*
;
Male
;
Lung Injury/immunology*
;
Cytokines/immunology*
;
Scutellaria baicalensis/chemistry*
;
Oligodeoxyribonucleotides/adverse effects*
;
Mice, Inbred C57BL
;
Coptis chinensis
8.Explainable machine learning model for predicting septic shock in critically sepsis patients based on coagulation indexes: A multicenter cohort study.
Qing-Bo ZENG ; En-Lan PENG ; Ye ZHOU ; Qing-Wei LIN ; Lin-Cui ZHONG ; Long-Ping HE ; Nian-Qing ZHANG ; Jing-Chun SONG
Chinese Journal of Traumatology 2025;28(6):404-411
PURPOSE:
Septic shock is associated with high mortality and poor outcomes among sepsis patients with coagulopathy. Although traditional statistical methods or machine learning (ML) algorithms have been proposed to predict septic shock, these potential approaches have never been systematically compared. The present work aimed to develop and compare models to predict septic shock among patients with sepsis.
METHODS:
It is a retrospective cohort study based on 484 patients with sepsis who were admitted to our intensive care units between May 2018 and November 2022. Patients from the 908th Hospital of Chinese PLA Logistical Support Force and Nanchang Hongdu Hospital of Traditional Chinese Medicine were respectively allocated to training (n=311) and validation (n=173) sets. All clinical and laboratory data of sepsis patients characterized by comprehensive coagulation indexes were collected. We developed 5 models based on ML algorithms and 1 model based on a traditional statistical method to predict septic shock in the training cohort. The performance of all models was assessed using the area under the receiver operating characteristic curve and calibration plots. Decision curve analysis was used to evaluate the net benefit of the models. The validation set was applied to verify the predictive accuracy of the models. This study also used Shapley additive explanations method to assess variable importance and explain the prediction made by a ML algorithm.
RESULTS:
Among all patients, 37.2% experienced septic shock. The characteristic curves of the 6 models ranged from 0.833 to 0.962 and 0.630 to 0.744 in the training and validation sets, respectively. The model with the best prediction performance was based on the support vector machine (SVM) algorithm, which was constructed by age, tissue plasminogen activator-inhibitor complex, prothrombin time, international normalized ratio, white blood cells, and platelet counts. The SVM model showed good calibration and discrimination and a greater net benefit in decision curve analysis.
CONCLUSION
The SVM algorithm may be superior to other ML and traditional statistical algorithms for predicting septic shock. Physicians can better understand the reliability of the predictive model by Shapley additive explanations value analysis.
Humans
;
Shock, Septic/blood*
;
Machine Learning
;
Male
;
Female
;
Retrospective Studies
;
Middle Aged
;
Aged
;
Sepsis/complications*
;
ROC Curve
;
Cohort Studies
;
Adult
;
Intensive Care Units
;
Algorithms
;
Blood Coagulation
;
Critical Illness
9.Analyzing the reasons for and prevention of serious complications after general anesthesia in children with obstructive sleep apnea.
Lan CHEN ; Dabo LIU ; Jianwen ZHONG ; Shuyao QIU ; Yilong ZHOU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(2):168-172
Objective:To explore the causes and preventive measures of respiratory arrest following general anesthesia in children with obstructive sleep apnea (OSA), in order to enhance the safety of OSA surgeries under general anesthesia. Methods:A retrospective analysis was conducted on the clinical and follow-up data of four pediatric cases that experienced respiratory arrest after general anesthesia for OSA at Shenzhen Hospital of Southern Medical University from March 2020 to March 2022. Results:All four children exhibited varying degrees of decreased blood oxygen saturation, cyanosis, and loss of consciousness after OSA surgery under general anesthesia, with one case experiencing respiratory and cardiac arrest. Through emergency rescue measures such as oxygen supplementation, suctioning, positive pressure ventilation, awakening, and cardiopulmonary resuscitation, all four children were stabilized. Follow-up after 2 to 6 months showed no complications. The main reasons for the occurrence are analyzed as: residual anesthetic drugs, characteristics of the OSA disease, and the unique aspects of the pediatric population. Conclusion:Children undergoing general anesthesia for OSA should be closely monitored for vital signs after surgery. If respiratory suppression occurs, active rescue measures should be taken to avoid serious consequences.
Humans
;
Sleep Apnea, Obstructive/surgery*
;
Anesthesia, General/adverse effects*
;
Retrospective Studies
;
Child
;
Postoperative Complications/prevention & control*
;
Male
;
Female
;
Child, Preschool
10.Erratum: Author correction to "Generation of αGal-enhanced bifunctional tumor vaccine" Acta Pharm Sin B 12 (2022) 3177-3186.
Jian HE ; Yu HUO ; Zhikun ZHANG ; Yiqun LUO ; Xiuli LIU ; Qiaoying CHEN ; Pan WU ; Wei SHI ; Tao WU ; Chao TANG ; Huixue WANG ; Lan LI ; Xiyu LIU ; Yong HUANG ; Yongxiang ZHAO ; Lu GAN ; Bing WANG ; Liping ZHONG
Acta Pharmaceutica Sinica B 2025;15(2):1207-1207
[This corrects the article DOI: 10.1016/j.apsb.2022.03.002.].


Result Analysis
Print
Save
E-mail