1.Impact of malignant cerebellar hemorrhage on prognosis of patients with small amount of spontaneous cerebellar hemorrhage
Chaozhen YANG ; Siying REN ; Guofeng WU ; Shiqi LIN ; Zhiyuan ZHANG ; Likun WANG
Chinese Journal of Geriatric Heart Brain and Vessel Diseases 2024;26(5):535-538
Objective To investigate the effect of malignant cerebellar hemorrhage on 3-month prognosis of small spontaneous cerebellar hemorrhage.Methods Clinical data of 380 consecutive patients with spontaneous cerebellar hemorrhage admitted in Emergency Department of the Affil-iated Hospital of Guizhou Medical University,Neurosurgery Department of Jinyang Hospital Af-filiated to Guizhou Medical University,and Neurosurgery Department of the Second Affiliated Hospital of Guizhou Medical University from April 2014 to March 2023 were collected and retro-spectively analyzed,and finally,70 patients who met the requirements of small amount of sponta-neous cerebellar hemorrhage were enrolled in this study.They were assigned into benign cerebel-lar hemorrhage group(43 cases)and malignant cerebellar hemorrhage group(27 cases).Accord-ing to their clinical outcomes in 3 months after onset,they were divided into a good prognosis group(51 cases)and a poor prognosis group(19 cases).General clinical data,imaging data,com-plications,inflammatory indicators and prognosis were collected.After collinear diagnosis was used to exclude factors with collinear influence,the independent correlation between good progno-sis and poor prognosis was analyzed by binary logistic regression model.Finally,ROC curve was plotted to analyze the significant data.Results The maximum diameter of hematoma was signifi-cantly larger in the malignant cerebellar hemorrhage group than the benign group(P=0.021).The patients of the poor prognosis group had larger proportion of malignant cerebellar hemor-rhage,and higher neutrophil percentage,WBC count and NLR than those of the good prognosis group(P<0.05,P<0.01).Multivariate logistic regression analysis showed that malignant cere-bellar hemorrhage was an independent predictor of poor prognosis in 3 months(OR=6.218,95%CI:1.140-17.623,P=0.013).The sensitivity,specificity,positive predictive value,negative pre-dictive value and Youden index of malignant cerebellar hemorrhage in predicting the 3-month prognosis of patients were 63.2%,70.6%,44.4%,83.7%and 0.338,respectively,and the AUC value was 0.669.Conclusion Malignant cerebellar hemorrhage is an independent predictor of 3-month prognosis in patients with small spontaneous cerebellar hemorrhage.The patients with malignant cerebellar hemorrhage have poor prognosis than those with benign cerebellar hemorrhage.
2.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma.
Zheqi LIU ; Zhen ZHANG ; Yu ZHANG ; Wenkai ZHOU ; Xu ZHANG ; Canbang PENG ; Tong JI ; Xin ZOU ; Zhiyuan ZHANG ; Zhenhu REN
International Journal of Oral Science 2024;16(1):9-9
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment. Oral squamous cell carcinoma (OSCC), a representative hypoxic tumor, has a heterogeneous internal metabolic environment. To clarify the relationship between different metabolic regions and the tumor immune microenvironment (TME) in OSCC, Single cell (SC) and spatial transcriptomics (ST) sequencing of OSCC tissues were performed. The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data. The metabolic activity of each spot was calculated using scMetabolism, and k-means clustering was used to classify all spots into hyper-, normal-, or hypometabolic regions. CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others. Through CellPhoneDB and NicheNet cell-cell communication analysis, it was found that in the hypermetabolic region, fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts (iCAFs), and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12. The secretion of CXCL12 recruits regulatory T cells (Tregs), leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment. This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC, ST and TCGA bulk data, and highlights potential targets for therapy.
Humans
;
Carcinoma, Squamous Cell/metabolism*
;
Squamous Cell Carcinoma of Head and Neck
;
Mouth Neoplasms/metabolism*
;
Immunosuppression Therapy
;
Transforming Growth Factor beta
;
Head and Neck Neoplasms
;
Gene Expression Profiling
;
Tumor Microenvironment
3.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.
4.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.
5.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.
6.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.
7.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.
8.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.
9.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.
10.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.

Result Analysis
Print
Save
E-mail