1.The role of iron-uptake factor PiuB in pathogenicity of soybean pathogen Xanthomonas axonopodis pv. glycines.
Ruyi SU ; Luojia JIN ; Jiangling XU ; Huiya GENG ; Xiao CHEN ; Siyi LIN ; Wei GUO ; Zhiyuan JI
Chinese Journal of Biotechnology 2024;40(1):177-189
Iron is an essential element for living organisms that plays critical roles in the process of bacterial growth and metabolism. However, it remains to be elucidated whether piuB encoding iron-uptake factor is involved in iron uptake and pathogenicity of Xanthomonas axonopodis pv. glycines (Xag). To investigate the function of piuB, we firstly generated a piuB deletion mutant (ΔpiuB) by homologous recombination. Compared with the wild-type, the piuB mutant exhibited significantly reduced growth and virulence in host soybean. The mutant displayed markedly increased siderophore secretory volume, and its sensitivity to Fe3+, Cu2+, Zn2+ and Mn2+ was significantly enhanced. Additionally, the H2O2 resistance, exopolysaccharide yield, biofilm formation, and cell mobility of ΔpiuB were significantly diminished compared to that of the wild-type. The addition of exogenous Fe3+ cannot effectively restore the above characteristics of ΔpiuB. However, expressing piuB in trans rescued the properties lost by ΔpiuB to the levels in the wild-type. Taken together, our results demonstrated that PiuB is a potential factor for Xag to assimilate Fe3+, and is necessary for Xag to be pathogenic in host soybean.
Iron
;
Glycine max
;
Virulence
;
Xanthomonas axonopodis/genetics*
;
Hydrogen Peroxide
2.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma.
Zheqi LIU ; Zhen ZHANG ; Yu ZHANG ; Wenkai ZHOU ; Xu ZHANG ; Canbang PENG ; Tong JI ; Xin ZOU ; Zhiyuan ZHANG ; Zhenhu REN
International Journal of Oral Science 2024;16(1):9-9
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment. Oral squamous cell carcinoma (OSCC), a representative hypoxic tumor, has a heterogeneous internal metabolic environment. To clarify the relationship between different metabolic regions and the tumor immune microenvironment (TME) in OSCC, Single cell (SC) and spatial transcriptomics (ST) sequencing of OSCC tissues were performed. The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data. The metabolic activity of each spot was calculated using scMetabolism, and k-means clustering was used to classify all spots into hyper-, normal-, or hypometabolic regions. CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others. Through CellPhoneDB and NicheNet cell-cell communication analysis, it was found that in the hypermetabolic region, fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts (iCAFs), and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12. The secretion of CXCL12 recruits regulatory T cells (Tregs), leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment. This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC, ST and TCGA bulk data, and highlights potential targets for therapy.
Humans
;
Carcinoma, Squamous Cell/metabolism*
;
Squamous Cell Carcinoma of Head and Neck
;
Mouth Neoplasms/metabolism*
;
Immunosuppression Therapy
;
Transforming Growth Factor beta
;
Head and Neck Neoplasms
;
Gene Expression Profiling
;
Tumor Microenvironment
3.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.
4.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.
5.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.
6.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.
7.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.
8.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.
9.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.
10.Spatial transcriptomics reveals that metabolic characteristics define the tumor immunosuppression microenvironment via iCAF transformation in oral squamous cell carcinoma
Liu ZHEQI ; Zhang ZHEN ; Zhang YU ; Zhou WENKAI ; Zhang XU ; Peng CANBANG ; Ji TONG ; Zou XIN ; Zhang ZHIYUAN ; Ren ZHENHU
International Journal of Oral Science 2024;16(1):110-121
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment.Oral squamous cell carcinoma(OSCC),a representative hypoxic tumor,has a heterogeneous internal metabolic environment.To clarify the relationship between different metabolic regions and the tumor immune microenvironment(TME)in OSCC,Single cell(SC)and spatial transcriptomics(ST)sequencing of OSCC tissues were performed.The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data.The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-,normal-,or hypometabolic regions.CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others.Through CellPhoneDB and NicheNet cell-cell communication analysis,it was found that in the hypermetabolic region,fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts(iCAFs),and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12.The secretion of CXCL12 recruits regulatory T cells(Tregs),leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment.This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC,ST and TCGA bulk data,and highlights potential targets for therapy.

Result Analysis
Print
Save
E-mail