1.Tumor-targeted metabolic inhibitor prodrug labelled with cyanine dyes enhances immunoprevention of lung cancer.
Wen LI ; Jiali HUANG ; Chen SHEN ; Weiye JIANG ; Xi YANG ; Jingxuan HUANG ; Yueqing GU ; Zhiyu LI ; Yi MA ; Jinlei BIAN
Acta Pharmaceutica Sinica B 2024;14(2):751-764
Recent progress in targeted metabolic therapy of cancer has been limited by the considerable toxicity associated with such drugs. To address this challenge, we developed a smart theranostic prodrug system that combines a fluorophore and an anticancer drug, specifically 6-diazo-5-oxo-l-norleucine (DON), using a thioketal linkage (TK). This system enables imaging, chemotherapy, photodynamic therapy, and on-demand drug release upon radiation exposure. The optimized prodrug, DON-TK-BM3, incorporating cyanine dyes as the fluorophore, displayed potent reactive oxygen species release and efficient tumor cell killing. Unlike the parent drug DON, DON-TK-BM3 exhibited no toxicity toward normal cells. Moreover, DON-TK-BM3 demonstrated high tumor accumulation and reduced side effects, including gastrointestinal toxicity, in mice. This study provides a practical strategy for designing prodrugs of metabolic inhibitors with significant toxicity stemming from their lack of tissue selectivity.
2.Efficacy and safety of LY01005 versus goserelin implant in Chinese patients with prostate cancer: A multicenter, randomized, open-label, phase III, non-inferiority trial.
Chengyuan GU ; Zengjun WANG ; Tianxin LIN ; Zhiyu LIU ; Weiqing HAN ; Xuhui ZHANG ; Chao LIANG ; Hao LIU ; Yang YU ; Zhenzhou XU ; Shuang LIU ; Jingen WANG ; Linghua JIA ; Xin YAO ; Wenfeng LIAO ; Cheng FU ; Zhaohui TAN ; Guohua HE ; Guoxi ZHU ; Rui FAN ; Wenzeng YANG ; Xin CHEN ; Zhizhong LIU ; Liqiang ZHONG ; Benkang SHI ; Degang DING ; Shubo CHEN ; Junli WEI ; Xudong YAO ; Ming CHEN ; Zhanpeng LU ; Qun XIE ; Zhiquan HU ; Yinhuai WANG ; Hongqian GUO ; Tiwu FAN ; Zhaozhao LIANG ; Peng CHEN ; Wei WANG ; Tao XU ; Chunsheng LI ; Jinchun XING ; Hong LIAO ; Dalin HE ; Zhibin WU ; Jiandi YU ; Zhongwen FENG ; Mengxiang YANG ; Qifeng DOU ; Quan ZENG ; Yuanwei LI ; Xin GOU ; Guangchen ZHOU ; Xiaofeng WANG ; Rujian ZHU ; Zhonghua ZHANG ; Bo ZHANG ; Wanlong TAN ; Xueling QU ; Hongliang SUN ; Tianyi GAN ; Dingwei YE
Chinese Medical Journal 2023;136(10):1207-1215
BACKGROUND:
LY01005 (Goserelin acetate sustained-release microsphere injection) is a modified gonadotropin-releasing hormone (GnRH) agonist injected monthly. This phase III trial study aimed to evaluated the efficacy and safety of LY01005 in Chinese patients with prostate cancer.
METHODS:
We conducted a randomized controlled, open-label, non-inferiority trial across 49 sites in China. This study included 290 patients with prostate cancer who received either LY01005 or goserelin implants every 28 days for three injections. The primary efficacy endpoints were the percentage of patients with testosterone suppression ≤50 ng/dL at day 29 and the cumulative probability of testosterone ≤50 ng/dL from day 29 to 85. Non-inferiority was prespecified at a margin of -10%. Secondary endpoints included significant castration (≤20 ng/dL), testosterone surge within 72 h following repeated dosing, and changes in luteinizing hormone, follicle-stimulating hormone, and prostate specific antigen levels.
RESULTS:
On day 29, in the LY01005 and goserelin implant groups, testosterone concentrations fell below medical-castration levels in 99.3% (142/143) and 100% (140/140) of patients, respectively, with a difference of -0.7% (95% confidence interval [CI], -3.9% to 2.0%) between the two groups. The cumulative probabilities of maintaining castration from days 29 to 85 were 99.3% and 97.8%, respectively, with a between-group difference of 1.5% (95% CI, -1.3% to 4.4%). Both results met the criterion for non-inferiority. Secondary endpoints were similar between groups. Both treatments were well-tolerated. LY01005 was associated with fewer injection-site reactions than the goserelin implant (0% vs . 1.4% [2/145]).
CONCLUSION:
LY01005 is as effective as goserelin implants in reducing testosterone to castration levels, with a similar safety profile.
TRIAL REGISTRATION
ClinicalTrials.gov, NCT04563936.
Humans
;
Male
;
Antineoplastic Agents, Hormonal/therapeutic use*
;
East Asian People
;
Gonadotropin-Releasing Hormone/agonists*
;
Goserelin/therapeutic use*
;
Prostate-Specific Antigen
;
Prostatic Neoplasms/drug therapy*
;
Testosterone
3.Knockdown of PGC1α suppresses dysplastic oral keratinocytes proliferation through reprogramming energy metabolism.
Yunkun LIU ; Nengwen HUANG ; Xianghe QIAO ; Zhiyu GU ; Yongzhi WU ; Jinjin LI ; Chengzhou WU ; Bo LI ; Longjiang LI
International Journal of Oral Science 2023;15(1):37-37
Oral potentially malignant disorders (OPMDs) are precursors of oral squamous cell carcinoma (OSCC). Deregulated cellular energy metabolism is a critical hallmark of cancer cells. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC1α) plays vital role in mitochondrial energy metabolism. However, the molecular mechanism of PGC1α on OPMDs progression is less unclear. Therefore, we investigated the effects of knockdown PGC1α on human dysplastic oral keratinocytes (DOKs) comprehensively, including cell proliferation, cell cycle, apoptosis, xenograft tumor, mitochondrial DNA (mtDNA), mitochondrial electron transport chain complexes (ETC), reactive oxygen species (ROS), oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and glucose uptake. We found that knockdown PGC1α significantly inhibited the proliferation of DOKs in vitro and tumor growth in vivo, induced S-phase arrest, and suppressed PI3K/Akt signaling pathway without affecting cell apoptosis. Mechanistically, downregulated of PGC1α decreased mtDNA, ETC, and OCR, while enhancing ROS, glucose uptake, ECAR, and glycolysis by regulating lactate dehydrogenase A (LDHA). Moreover, SR18292 (an inhibitor of PGC1α) induced oxidative phosphorylation dysfunction of DOKs and declined DOK xenograft tumor progression. Thus, our work suggests that PGC1α plays a crucial role in cell proliferation by reprograming energy metabolism and interfering with energy metabolism, acting as a potential therapeutic target for OPMDs.
Humans
;
Carcinoma, Squamous Cell/metabolism*
;
Cell Proliferation
;
DNA, Mitochondrial
;
Energy Metabolism
;
Glucose
;
Mouth Neoplasms/metabolism*
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism*
;
Phosphatidylinositol 3-Kinases
;
Reactive Oxygen Species
4.Research progress on oral microbiota application in forensic medicine
Zhiyu GU ; Yunkun LIU ; Yijie CHEN ; Jiashuang LI ; Yingqian DUAN ; Xueqin SUN ; Yang LI
Chinese Journal of Forensic Medicine 2023;38(6):687-691
Forensic science is looking for clues at a crime scene in order to reconstruct the crime scene.Classic clues include DNA and fingerprints.Forensic microbiology is a branch of forensic medicine that uses microbes as clues,providing us information about lifestyle,circadian rhythms,geographic locations,postmortem intervals,cancers,and oral or systemic diseases.Oral cavity,as the place with the second largest number of microorganisms,can provide researchers with microbial information of each ecological niche,and assist in the prediction,diagnosis and monitoring of oral or systemic diseases.This paper reviews the composition of oral microbiome,the application in oral diseases,systemic diseases and forensic medicine,with the aim of providing some references for the development of forensic microbiology based on oral microbiome.
5.Early Diagnosis of Bipolar Disorder Coming Soon: Application of an Oxidative Stress Injury Biomarker (BIOS) Model.
Zhiang NIU ; Xiaohui WU ; Yuncheng ZHU ; Lu YANG ; Yifan SHI ; Yun WANG ; Hong QIU ; Wenjie GU ; Yina WU ; Xiangyun LONG ; Zheng LU ; Shaohua HU ; Zhijian YAO ; Haichen YANG ; Tiebang LIU ; Yong XIA ; Zhiyu CHEN ; Jun CHEN ; Yiru FANG
Neuroscience Bulletin 2022;38(9):979-991
Early distinction of bipolar disorder (BD) from major depressive disorder (MDD) is difficult since no tools are available to estimate the risk of BD. In this study, we aimed to develop and validate a model of oxidative stress injury for predicting BD. Data were collected from 1252 BD and 1359 MDD patients, including 64 MDD patients identified as converting to BD from 2009 through 2018. 30 variables from a randomly-selected subsample of 1827 (70%) patients were used to develop the model, including age, sex, oxidative stress markers (uric acid, bilirubin, albumin, and prealbumin), sex hormones, cytokines, thyroid and liver function, and glycolipid metabolism. Univariate analyses and the Least Absolute Shrinkage and Selection Operator were applied for data dimension reduction and variable selection. Multivariable logistic regression was used to construct a model for predicting bipolar disorder by oxidative stress biomarkers (BIOS) on a nomogram. Internal validation was assessed in the remaining 784 patients (30%), and independent external validation was done with data from 3797 matched patients from five other hospitals in China. 10 predictors, mainly oxidative stress markers, were shown on the nomogram. The BIOS model showed good discrimination in the training sample, with an AUC of 75.1% (95% CI: 72.9%-77.3%), sensitivity of 0.66, and specificity of 0.73. The discrimination was good both in internal validation (AUC 72.1%, 68.6%-75.6%) and external validation (AUC 65.7%, 63.9%-67.5%). In this study, we developed a nomogram centered on oxidative stress injury, which could help in the individualized prediction of BD. For better real-world practice, a set of measurements, especially on oxidative stress markers, should be emphasized using big data in psychiatry.
Biomarkers/metabolism*
;
Bipolar Disorder/metabolism*
;
Depressive Disorder, Major/diagnosis*
;
Early Diagnosis
;
Humans
;
Oxidative Stress
6.A consensus on the standardization of the next generation sequencing process for the diagnosis of genetic diseases (1)-Procedures prior to genetic testing
Jian WANG ; Weihong GU ; Hui HUANG ; Yiping SHEN ; Hui XIONG ; Yi HUANG ; Ming QI ; Dongyan AN ; Duan MA ; Xuxu DENG ; Yong GAO ; Xiaodong WANG ; Zaiwei ZHOU ; Jian WU ; Xiong XU ; Wei ZHANG ; Hui KANG ; Zhiyu PENG ; Shihui YU ; Liang WANG ; Shangzhi HUANG
Chinese Journal of Medical Genetics 2020;37(3):334-338
Pre-testing preparation is the basis and starting point of genetic testing.The process includes collection of clinical information,formulation of testing scheme,genetic counseling before testing,and completion of informed consent and testing authorization.To effectively identify genetic diseases in clinics can greatly improve the diagnostic rate of next generation sequencing (NGS),thereby reducing medical cost and improving clinical efficacy.The analysis of NGS results relies,to a large extent,on the understanding of genotype-phenotype correlations,therefore it is particularly important to collect and evaluate clinical phenotypes and describe them in uniform standard terms.Different types of genetic diseases or mutations may require specific testing techniques,which can yield twice the result with half the effort.Pre-testing genetic counseling can help patients and their families to understand the significance of relevant genetic testing,formulate individualized testing strategies,and lay a foundation for follow-up.
7.A consensus on the standardization of the next generation sequencing process for the diagnosis of genetic diseases (2)-Sample collection, processing and detection
Xiufeng ZENG ; Zhenpeng XU ; Hui HUANG ; Wubin QU ; Ian J WU ; Juan WANG ; Yong GAO ; Dongyan AN ; Xiaoqing WANG ; Hui XIONG ; Yiping SHEN ; Ming QI ; Xuxu DENG ; Xiong XU ; Lele SUN ; Zhiyu PENG ; Weihong GU ; Shangzhi HUANG ; Shihui YU
Chinese Journal of Medical Genetics 2020;37(3):339-344
With high accuracy and precision,next generation sequencing (NGS) has provided a powerful tool for clinical testing of genetic diseases.To follow a standardized experimental procedure is the prerequisite to obtain stable,reliable,and effective NGS data for the assistance of diagnosis and/or screening of genetic diseases.At a conference of genetic testing industry held in Shanghai,May 2019,physicians engaged in the diagnosis and treatment of genetic diseases,experts engaged in clinical laboratory testing of genetic diseases and experts from third-party genetic testing companies have fully discussed the standardization of NGS procedures for the testing of genetic diseases.Experts from different backgrounds have provided opinions for the operation and implementation of NGS testing procedures including sample collection,reception,preservation,library construction,sequencing and data quality control.Based on the discussion,a consensus on the standardization of the testing procedures in NGS laboratories is developed with the aim to standardize NGS testing and accelerate implementation of NGS in clinical settings across China.
8.A consensus on the standardization of the next generation sequencing process for the diagnosis of genetic diseases(3)-Data analysis
Jun SUN ; Yi HUANG ; Xiaodong WANG ; Wenfu LI ; Dongyan AN ; Yong GAO ; Hui XIONG ; Zaiwei ZHOU ; Xiong XU ; Xuxu DENG ; Xiaoqing WANG ; Hui HUANG ; Zhiyu PENG ; Wei ZHANG ; Shihui YU ; Liang WANG ; Weihong GU ; Shangzhi HUANG ; Yiping SHEN
Chinese Journal of Medical Genetics 2020;37(3):345-351
Bioinformatic analysis and variant classification are the key components of high-throughput sequencing-based genetic diagnostic approach.This consensus is part of the effort to develop a standardized process for next generation sequencing (NGS)-based test for germline mutations underlying Mendelian disorders in China.The flow-chart,common software,key parameters of bioinformatics pipeline for data processing,annotation,storage and variant classification are reviewed,which is aimed to help improving and maintaining a high-quality process and obtaining consistent outcomes for NGS-based molecular diagnosis.
9.A consensus on the standardization of the next generation sequencing process for the diagnosis of genetic diseases (4)-Report interpretation and genetic counseling
Hui HUANG ; Yiping SHEN ; Weihong GU ; Yi HUANG ; Xiaodong WANG ; Yong GAO ; Hui XIONG ; Zaiwei ZHOU ; Jing WU ; Duan MA ; Dongyan AN ; Wei ZHANG ; Qinmei FU ; Xi XIONG ; Zhiyu PENG ; Liang WANG ; Shangzhi HUANG ; Ming QI
Chinese Journal of Medical Genetics 2020;37(3):352-357
Clinical genetic testing results are compiled into a standardized report by genetic specialists and provided to clinicians and patients (Should the patient be intellectually disabled or under 18,the report will be provided to his/her parents or legal guardians).The content of genetic testing report should conform to relevant guidelines,industry standards and consensus.The decisions of clinicians will be made based on the report and clinical indications.Genetic counselors should provide post-test counseling to clinicians and patients or their authorized family members.A mechanism of follow-up visit after the genetic testing should be established with informed consent.Data should be shared by clinical institutions and genome sequencing institutions.As findings upon follow-up visit can help with further evaluation of the results,genome sequencing institutions should regularly re-analyze historical and follow-up data,and the updated results should be shared with clinical institutions.All activities involving reporting,genetic counselling,follow-up visiting,and re-analyzing should follow the relevant guidelines and regulations.
10.Discussion on the standard of clinical genetic testing report and the consensus of gene testing industry.
Hui HUANG ; pengzhiyu@bgi.com. ; Yiping SHEN ; Weihong GU ; Wei WANG ; Yiming WANG ; Ming QI ; Jun SHEN ; Zhengqing QIU ; Shihui YU ; Zaiwei ZHOU ; Baixue CHEN ; Lei CHEN ; Yundi CHEN ; Huanhuan CUI ; Juan DU ; Yong GAO ; Yiran GUO ; Chanjuan HU ; Liang HU ; Yi HUANG ; Peipei LI ; Xiaorong LI ; Xiurong LI ; Yaping LIU ; Jie LU ; Duan MA ; Yongyi MA ; Mei PENG ; Fang SONG ; Hongye SUN ; Liang WANG ; Dawei WANG ; Jingmin WANG ; Ling WANG ; Zhengyuan WANG ; Zhinong WANG ; Jihong WU ; Jing WU ; Jian WU ; Yimin XU ; Hong YAO ; Dongsheng YANG ; Xu YANG ; Yanling YANG ; Ying ZHANG ; Yulin ZHOU ; Baosheng ZHU ; Sicong ZENG ; Zhiyu PENG ; Shangzhi HUANG
Chinese Journal of Medical Genetics 2018;35(1):1-8
The widespread application of next generation sequencing (NGS) in clinical settings has enabled testing, diagnosis, treatment and prevention of genetic diseases. However, many issues have arisen in the meanwhile. One of the most pressing issues is the lack of standards for reporting genetic test results across different service providers. The First Forum on Standards and Specifications for Clinical Genetic Testing was held to address the issue in Shenzhen, China, on October 28, 2017. Participants, including geneticists, clinicians, and representatives of genetic testing service providers, discussed problems of clinical genetic testing services across in China and shared opinions on principles, challenges, and standards for reporting clinical genetic test results. Here we summarize expert opinions presented at the seminar and report the consensus, which will serve as a basis for the development of standards and guidelines for reporting of clinical genetic testing results, in order to promote the standardization and regulation of genetic testing services in China.

Result Analysis
Print
Save
E-mail