1.Mechanism of Shoutaiwan in Treatment of Recurrent Spontaneous Abortion: A Review
Xue DANG ; Feixiang LIU ; Yanchen FENG ; Zhiying CHE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):283-291
Recurrent spontaneous abortion (RSA) is a common gynecological disease during pregnancy, clinically characterized by repeated spontaneous abortions, yet its pathological mechanism remains incompletely understood. Traditional Chinese medicine attributes the pathogenesis of RSA to the deficiency of Chong Ren and the lack of fetal solidity. It has amassed experience in treating RSA, with Shoutaiwan being widely utilized for addressing miscarriage symptoms such as habitual abortion due to kidney deficiency, bleeding during pregnancy, and fetal movement. In recent years, there has been a gradual increase in experimental studies on the application of Shoutaiwan in treating RSA and on related experiments. These studies have demonstrated that Shoutaiwan preserves the fetus mainly by modulating hormone balance, alleviating immune inflammation, and enhancing blood coagulation equilibrium during pregnancy. Besides, through the modulation of key signaling pathways such as nuclear factor, erythroid 2 like 2 (Nrf2)/heme oxygenase-1 (HO-1) and Janus kinase 1 (JAK1)/signal transducer and activator of transcription (STAT), as well as mitogen-activated protein kinase (MAPK), Shoutaiwan has improved cellular antioxidant capacity, adjusted the phenotype of trophoblast and metaphase cells, and inhibited immune rejection, thus improving the pregnancy success rate. These findings not only elucidate the diverse biological foundations underlying Shoutaiwan's efficacy in treating RSA but also offer a scientific rationale for its clinical application and further mechanism research. Nonetheless, there remains a dearth of systematic reviews on RSA treatment with Shoutaiwan. Therefore, this review summarizes and synthesizes existing research findings to systematically analyze existing literature and studies, delving deeply into the principal pharmacological effects and associated signaling pathways of Shoutaiwan in regulating RSA. It aims to establish crucial reference points for its clinical application in RSA treatment and future experiments and research.
2.Protective Effect of Tongluo Baoshen Prescription-containing Serum on Lipopolysaccharide-induced Podocyte Injury of Rats
Yongfang LIU ; Tiantian YIN ; Huiyang LIU ; Rui HUANG ; Zhiying FENG ; Li ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):139-148
ObjectiveTo observe the effects of Tongluo Baoshen prescription (TLBS)-containing serum on the rat podocyte injury induced by lipopolysaccharide (LPS) and explore the potential mechanisms. MethodsSD rats were used to prepare the blank serum, losartan potassium-containing serum, and low-, medium-, and high-dose TLBS-containing sera. Rat podocytes were cultured in vitro, and the effects of drug-containing sera on podocyte viability were detected by the cell counting kit-8 (CKK-8) method. The optimal intervention volume fraction of drug-containing sera and the optimal concentration of LPS for inducing the podocyte injury were determined. Rat podocytes were grouped as follows: normal control (NC, 10% blank serum), model control (MC, 20.00 mg·L-1 LPS+10% black serum), losartan potassium (LP, 20.00 mg·L-1 LPS+10% losartan potassium-containing serum), low-dose TLBS (TLBS-L, 20.00 mg·L-1 LPS+10% low-dose TLBS-containing serum), medium-dose TLBS (TLBS-M, 20.00 mg·L-1 LPS+10% medium-dose TLBS-containing serum), and high-dose TLBS (TLBS-H, 20.00 mg·L-1 LPS+10% high-dose TLBS-containing serum), and the interventions lasted for 48 h. The ultrastructure of podocytes was observed under a transmission electron microscope. The podocyte apoptosis was detected by the terminal deoxynucleoitidyl transferase mediated nick-end labeling (TUNEL) kit. Immunofluorescence was used to detect the expression of gasdermin D N-terminal fragment (GSDMD-NT) in podocytes. The mRNA and protein levels of G protein-coupled receptor family C group 5 member B (GPRC5B), nuclear factor-κB (NF-κB) p50, NF-κB p52, NF-κB p65, Rel B, c-Rel, NOD-like receptor protein 3 (NLRP3), cysteinyl aspartate-specific protease-1 (Caspase-1), GSDMD-NT, interleukin (IL)-1β, IL-18, nephrin, integrin α3, and integrin β1 in podocytes were determined by real-time quaritiative polymerase chain reaction (Real-time PCR) and Western blot, respectively. ResultsCompared with the NC group, the MC group showed reduced podocyte protrusions and organelles, segmental missing of cell membranes, increased and swollen mitochondria, irregular nuclear membranes, light chromatin, increased TUNEL fluorescence-positive nuclei (P<0.01), obviously enhanced fluorescence intensity of GSDMD-NT, up-regulated mRNA and protein levels of GPRC5B, NF-κB p50, NF-κB p52, NF-κB p65, Rel B, c-Rel, NLRP3, caspase-1, GSDMD-NT, IL-1β, and IL-18 (P<0.01), and down-regulated mRNA and protein levels of nephrin, integrin α3, and integrin β1 (P<0.01) in podocytes. Compared with the MC group, the LP, TLBS-M, and TLBS-H groups showed improved ultrastructure of podocytes with increased protrusions, intact cell membranes, reduced organelles, and alleviated mitochondrial swelling, decreased TUNEL fluorescence-positive nuclei (P<0.01), weakened fluorescence intensity of GSDMD-NT, down-regulated mRNA and protein levels of GPRC5B, NF-κB p50, NF-κB p52, NF-κB p65, Rel B, c-Rel, NLRP3, caspase-1, GSDMD-NT, IL-1β, and IL-18 (P<0.01), and up-regulated mRNA and protein levels of nephrin, integrin α3, and integrin β1 (P<0.05, P<0.01). Moreover, the changes above were the most obvious in the TLBS-H group. ConclusionThe TLBS-containing serum can regulate the GPRC5B/NF-κB/NLRP3 pathway to inhibit pyroptosis, thereby ameliorating the podocyte injury induced by LPS.
3.Effect and mechanism of Jingangteng capsules in the treatment of non-alcoholic fatty liver disease based on gut microbiota and metabolomics
Shiyuan CHENG ; Yue XIONG ; Dandan ZHANG ; Jing LI ; Zhiying SUN ; Jiaying TIAN ; Li SHEN ; Yue SHEN ; Dan LIU ; Qiong WEI ; Xiaochuan YE
China Pharmacy 2025;36(11):1340-1347
OBJECTIVE To investigate the effect and mechanism of Jingangteng capsules in the treatment of non-alcoholic fatty liver disease (NAFLD). METHODS Thirty-two SD rats were randomly divided into normal group and modeling group. The modeling group was fed a high-fat diet to establish a NAFLD model. The successfully modeled rats were then randomly divided into model group, atorvastatin group[positive control, 2 mg/(kg·d)], and Jingangteng capsules low- and high-dose groups [0.63 and 2.52 mg/(kg·d)], with 6 rats in each group. The pathological changes of the liver were observed by hematoxylin-eosin staining and oil red O staining. Enzyme-linked immunosorbent assay was performed to determine the serum levels of triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), alanine transaminase (ALT), aspartate transaminase (AST), tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, IL-18. 16S rDNA amplicon sequencing and metabolomics techniques were applied to explore the effects of Jingangteng capsules on gut microbiota and metabolisms in NAFLD rats. Based on the E-mail:591146765@qq.com metabolomics results, Western blot analysis was performed to detect proteins related to the nuclear factor kappa-B (NF-κB)/NOD-like receptor family protein 3 (NLRP3) signaling pathway in the livers of NAFLD rats. RESULTS The experimental results showed that Jingangteng capsules could significantly reduce the serum levels of TG, TC, LDL-C, AST, ALT, TNF-α, IL-1β, IL-6, IL-18, while increased the level of HDL-C, and alleviated the hepatic cellular steatosis and inflammatory infiltration in NAFLD rats. They could regulate the gut microbiota disorders in NAFLD rats, significantly increased the relative abundance of Romboutsia and Oscillospira, and significantly decreased the relative abundance of Blautia (P<0.05). They also regulated metabolic disorders primarily by affecting secondary bile acid biosynthesis, fatty acid degradation, O-antigen nucleotide sugar biosynthesis, etc. Results of Western blot assay showed that they significantly reduced the phosphorylation levels of NF-κB p65 and NF-κB inhibitor α, and the protein expression levels of NLRP3, caspase-1 and ASC (P<0.05 or P<0.01). CONCLUSIONS Jingangteng capsules could improve inflammation, lipid accumulation and liver injury in NAFLD rats, regulate the disorders of gut microbiota and metabolisms, and inhibit NF-κB/NLRP3 signaling pathway. Their therapeutic effects against NAFLD are mediated through the inhibition of the NF-κB/NLRP3 signaling pathway.
4.SHI Zaixiang's Clinical Experience in Using Chaihu Guizhi Ganjiang Decoction (柴胡桂枝干姜汤) to Treat High Fever in Sepsis
Tingting ZHU ; Yingying LIU ; Hailan CUI ; Zhiying REN ; Mingjing SHAO ; Yan BIAN ; Liyan WANG ; Zhenjie CHEN ; Yuan LIU ;
Journal of Traditional Chinese Medicine 2025;66(16):1645-1648
This paper summarizes Professor SHI Zaixiang's clinical experience in treating high fever caused by sepsis using Chaihu Guizhi Ganjiang Decoction (柴胡桂枝干姜汤). He holds that the key pathogenesis of sepsis involves constrained heat in the shaoyang and internal accumulation of water and fluids. The clinical manifestations such as high fever, chills, and alternating sensations of cold and heat are attributed to pathogenic heat constrained in the shaoyang. Meanwhile, soft tissue edema and serous cavity effusions are due to shaoyang dysfunction and internal water retention. In clinical practice, treating sepsis-related high fever requires addressing both the shaoyang-constrained heat and the associated edema and effusions. The therapeutic approach focuses on harmonizing the shaoyang and resolving internal fluids, using Chaihu Guizhi Ganjiang Decoction as the base formula with flexible modifications. Professor SHI emphasizes that this formula shows a rapid antipyretic effect, particularly in cases where multiple anti-infective treatments have failed.
5.Predictive value of preoperative combined detection of NLR and PTAR for early abdominal infection after liver transplantation
Huabin PENG ; Ying LIU ; Fei HOU ; Shuang ZHAO ; Yizhi ZHANG ; Tingting CUI ; Zhiying HE ; Jingyi LIU ; Haofeng XIONG ; Liying SUN
Organ Transplantation 2025;16(6):931-943
Objective To investigate the predictive value of preoperative combined detection of neutrophil-to-lymphocyte ratio (NLR) and prothrombin time-international normalized ratio to albumin ratio (PTAR) for early abdominal infection after liver transplantation. Methods Clinical data of 287 recipients who underwent liver transplantation at the Liver Transplant Center of Beijing Friendship Hospital, Affiliated to Capital Medical University, from January 2020 to April 2024 were retrospectively analyzed. The patients were divided into infection group (n=60) and non-infection group (n=227) based on whether abdominal infection occurred within 30 days after surgery. The distribution characteristics of pathogens and infection time in infected patients were analyzed. Spearman correlation analysis was used to assess the correlation between NLR, PTAR, Child-Pugh score and preoperative model for end-stage liver disease (MELD) score. Univariate and multivariate logistic regression analyses were performed to identify risk factors for abdominal infection. Receiver operating characteristic (ROC) curves were plotted for NLR, PTAR, and the combined prediction model to evaluate their predictive efficacy for abdominal infection after liver transplantation. Based on the cutoff value of the combined model, recipients were divided into low-risk and high-risk groups, and Kaplan-Meier analysis was used to compare the cumulative incidence of abdominal infection within 30 days after surgery between the two groups. Results Among the 287 recipients who underwent liver transplantation, 60 developed bacterial or fungal abdominal infections postoperatively. A total of 86 strains were isolated from infected patients, with Gram-negative bacteria accounting for 58%, Gram-positive bacteria for 36%, and fungi for 5%. Preoperative NLR and PTAR were positively correlated with Child-Pugh and MELD scores (all 1 > r > 0, P < 0.05). Logistic regression analysis showed that preoperative NLR, preoperative PTAR, postoperative ICU stay duration and postoperative biliary leakage were risk factors for abdominal infection within 30 days after surgery. The area under the curve (AUC) for NLR, PTAR, Child-Pugh score and MELD score were 0.771, 0.735, 0.650 and 0.741, respectively. The AUC for the combined NLR and PTAR prediction model was 0.824 (95% confidence interval: 0.763-0.885, P < 0.001), with a cutoff value of 0.168. Kaplan-Meier analysis showed that the cumulative incidence of abdominal infection within 30 days after surgery was lower in the low-risk group than in the high-risk group, with statistically significant difference (P < 0.001). Conclusions Preoperative NLR and PTAR are independent risk factors for abdominal infection within 30 days after liver transplantation. The combined prediction model of NLR and PTAR may effectively identify high-risk recipients for early abdominal infection after liver transplantation, providing basis for early intervention.
6.Organ medicine: New concept of life sciences.
Zhitao CHEN ; Shuangjin YU ; Zhiying LIU ; Yefu LI ; Haidong TAN ; Yifang GAO ; Qiang ZHAO ; Xiaoshun HE
Chinese Medical Journal 2025;138(8):934-936
7.A novel dual-targeting strategy of nanobody-driven protein corona modulation for glioma therapy.
Yupei ZHANG ; Shugang QIN ; Tingting SONG ; Zhiying HUANG ; Zekai LV ; Yang ZHAO ; Xiangyu JIAO ; Min SUN ; Yinghan ZHANG ; Guang XIE ; Yuting CHEN ; Xuli RUAN ; Ruyue LIU ; Haixing SHI ; Chunli YANG ; Siyu ZHAO ; Zhongshan HE ; Hai HUANG ; Xiangrong SONG
Acta Pharmaceutica Sinica B 2025;15(9):4917-4931
Glioma represents the most prevalent malignant tumor of the central nervous system, with chemotherapy serving as an essential adjunctive treatment. However, most chemotherapeutic agents exhibit limited ability to penetrate the blood-brain barrier (BBB). This study introduced a novel dual-targeting strategy for glioma therapy by modulating the formation of nanobody-driven protein coronas to enhance the brain and tumor-targeting efficiency of hydrophobic cisplatin prodrug-loaded lipid nanoparticles (C8Pt-Ls). Specifically, nanobodies (Nbs) with fibrinogen-binding capabilities were conjugated to the surface of C8Pt-Ls, resulting in the generation of Nb-C8Pt-Ls. Within the bloodstream, Nb-C8Pt-Ls could bound more fibrinogen, forming the protein corona that specifically interacted with LRP-1, a receptor highly expressed on the BBB. This interaction enabled a "Hitchhiking Effect" mechanism, facilitating efficient trans-BBB transport and promoting effective brain targeting. Additionally, the protein corona interacted with LRP-1, which is also overexpressed in glioma cells, achieving precise tumor targeting. Computational simulations and SPR detection clarified the molecular interaction mechanism of the Nb-fibrinogen-(LRP-1) complex, confirming its binding specificity and stability. Our results demonstrated that this strategy significantly enhanced C8Pt accumulation in brain tissues and tumors, induced apoptosis in glioma cells, and improved therapeutic efficacy. This study provides a novel framework for glioma therapy and underscores the potential of protein corona modulation-based dual-targeting strategies in advancing treatments for brain tumors.
8.Effects of atractylodin on lung injury and airway inflammation in rats with AECOPD by regulating JNK/p38 MAPK signaling pathway
Zhiying SUN ; Yingzhe WANG ; Yuan LIU ; Yapeng ZHAO ; Tingting ZHOU
China Pharmacy 2025;36(23):2935-2940
OBJECTIVE To discuss the effect mechanism of atractylodin (ATR) on lung injury and airway inflammation in rats with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). METHODS AECOPD model was established using smoke exposure and intratracheal injection of lipopolysaccharide. Rats were randomly grouped into model group, ATR low-, medium- and high-dose groups (25, 50 and 100 mg/kg), as well as high-dose ATR+anisomycin [ANS, c-Jun N-terminal kinase (JNK) activator] group (100 mg/kg ATR+5 mg/kg ANS). Additionally, a non-modeled control group was set up, with 12 rats in each group. Rats in each group were intraperitoneally injected with the corresponding drug solution/normal saline once daily for 14 consecutive days. After the last medication, lung function [peak expiratory flow (PEF), the ratio of forced expiratory volume (FEV) to forced vital capacity (FVC), arterial partial pressure of oxygen (PaO2)], as well as the number of inflammatory cells and the levels of inflammatory cytokines [interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1β] in bronchoalveolar lavage fluid (BALF), were measured. The pathological morphology of lung tissue in rats was observed. 163.com The apoptosis of lung epithelial cells was detected, and the expression levels of proteins related to the JNK/p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway in rat lung tissues were detected. RESULTS Compared with control group, PEF, FEV/FVC and PaO2 of model group were slowed or decreased significantly (P<0.05). The number of white blood cells, neutrophils, lymphocytes and macrophages, as well as the levels of IL-1β, TNF-α and IL-6 in BALF, along with the pathological score, the apoptosis rate of lung epithelial cells, and the phosphorylation levels of JNK and p38 MAPK proteins in lung tissues, were all increased or raised significantly (P<0.05); lung tissue exhibited severe damage, with disordered cell arrangement and marked infiltration of inflammatory cells. Compared with model group, the levels of above quantitative indicators in rats from all ATR dosage groups showed significant improvement in a dose-dependent manner (P<0.05); moreover, the pathological damage in lung tissue was alleviated, with cells arranged in a regular and orderly fashion. Compared with ATR high-dose group, the levels of the above quantitative indicators in rats from the high-dose ATR+ANS group were significantly reversed (P<0.05), and the pathological damage in lung tissue was exacerbated. CONCLUSIONS ATR inhibits airway inflammation by suppressing the activity of the JNK/p38 MAPK signaling pathway, thereby improving lung tissue damage in AECOPD rats.
9.Mechanism prediction and experimental verification of Maxing Shigan Decoction against influenza A virus infection based on UPLC-MS/MS and network pharmacology
Jiawang HUANG ; Jianing SHI ; Yang LIU ; Zhiying FENG ; Jingmin FU ; Siyu WANG ; Xuan JI ; Rong YU ; Ling LI
Digital Chinese Medicine 2025;8(4):532-542
Objective:
To investigate the chemical compositions of Maxing Shigan Decoction (麻杏石甘汤, MXSGD) and elucidate its anti-influenza A virus (IAV) mechanism from prediction to validation.
Methods:
Ultra high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was employed to analyze the chemical compositions of MXSGD. Network pharmacology theories were used to screen and identify shared targets of both the potential targets of active ingredients of MXSGD and IAV. A protein-protein interaction (PPI) network was then constructed, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The binding stability between core bioactive compounds and key targets was validated by molecular docking and dynamic simulations. A total of 24 BALB/c mice were infected with IAV to build IAV mouse models. After successful modelling, the mouse models were randomly divided into model, MXSGD high-dose (2.8 g/kg), MXSGD low-dose (1.4 g/kg), and oseltamivir (20.14 mg/kg) groups, with an additional normal mice as control group (n = 6 per group). The treatments were administered by gavage daily between 8:00 a.m. and 10:00 a.m. for five consecutive days. Upon completion of the administration, the body weight ratio, lung index, protein content in the bronchoalveolar lavage fluid (BALF), and the levels of inflammatory factors including interleukin (IL)-6 and tumor necrosis factor (TNF)-α in mice were measured to preliminarily analyze the therapeutic efficacy of MXSGD against IAV infection. Furthermore, the expression levels of mechanistic target of rapamycin (mTOR), hypoxia inducible factor (HIF)-1α, and vascular endothelial growth factor (VEGF) proteins in the HIF-1 signaling pathway, which was enriched by network pharmacology, were detected by Western blot.
Results:
A total of 212 chemical components in MXSGD were identified by the UPLC-MS/MS method. These chemical components can be classified into 9 primary categories and 31 secondary categories. After intersecting the chemical component targets with IAV-related targets, a total of 567 potential MXSGD components targeting IAV were identified. The construction of PPI network and the results of both GO and KEGG enrichment analyses revealed that the anti-IAV effects of MXSGD were associated with multiple pathways, including apoptosis, TNF, HIF-1, and IL-17 signaling pathways. The results of molecular docking demonstrated that the binding energies between the core compound 1-methoxyphaseollin and key targets including HIF-1α, mTOR, and VEGF were all lower than – 5.0 kcal/mol. Furthermore, molecular dynamics simulations confirmed the structural stability of the resulting complexes. Animal experiments showed that compared with the normal controls, IAV-infected mice showed significantly reduced body weight ratio, markedly increased lung index, protein content in BALF, and the levels of inflammatory factors such as IL-6 and TNF-α (P < 0.01), thereby causing damage to the lung tissue; consequently, the expression levels of mTOR, HIF-1α, and VEGF proteins in the lung tissues of these mice were significantly elevated (P < 0.01). However, after MXSGD treatment, the mouse models presented a significant increase in body weight ratio, as well as marked decreases in lung index, protein content in BALF, and the levels of inflammatory factors including IL-6 and TNF-α (P < 0.01). Furthermore, the therapy alleviated IAV-induced injuries and significantly downregulated the expression levels of mTOR, HIF-1α, and VEGF proteins in lung tissues (P < 0.01 or P < 0.05).
Conclusion
MXSGD exerts anti-IAV effects through multi-component, multi-target, and multi-pathway synergism. Among them, 1-methoxyphaseollin is identified as a potential key component, which alleviates virus-induced lung injury and inflammatory response via the regulation of HIF-1 signaling pathway, providing experimental evidence for the clinical application of MXSGD.
10.Summary of the Academic Thought of TCM Master Zhou Zhongying on Integrating the Ancient and Modern to Create a New System of Pathogenesis Theory
Fang YE ; Mianhua WU ; Xueping ZHOU ; Haibo CHENG ; Liu LI ; Zhe FENG ; Lu JIN ; Yao ZHU ; Lizhong GUO ; Zhiqiang ZHAO ; Zhiying WANG ; Miaowen JIN
Journal of Nanjing University of Traditional Chinese Medicine 2024;40(10):1071-1079
This paper summarizes the exploration process and academic significance of the academic thought of Zhou Zhongying,a master of traditional Chinese medicine,who took the creation of a new system of TCM pathogenesis theory as the core,and interprets its theoretical connotation.As a pioneer in the construction of higher education textbooks for traditional Chinese medicine,Professor Zhou Zhongying created the outline of TCM internal medicine viscera differentiation,persisted in carrying out innovative research on patho-genesis theory,achieved fruitful academic results,and enriched and developed the academic system of TCM theory.In the clinical di-agnosis and treatment of exogenous febrile diseases and acute and difficult internal injuries,he systematically created new pathogenesis theories such as stasis-heat theory and cancer toxicity theory.Based on this,the legislation of medication can improve the clinical effi-cacy,and it is realized that identifying the pathogenesis is the key link in syndrome differentiation and treatment.In his later years,Professor Zhou Zhongying,guided by the holistic view,proposed the"thirteen pathogenesis"and constructed a new system of TCM pathogenesis differentiation,highlighting the guiding value of complex pathogenesis and the causal chain of pathogenesis elements to complex clinical diseases and syndromes,forming a theory with the idea of"examining syndromes and seeking pathogenesis,activating syndrome differentiation"as its soul.This theory breaks through the rigid thinking of syndrome differentiation and treatment based on a single pathogenesis or fixed syndrome type,reconstructs the theoretical framework of TCM with the idea of holistic view,and is a major academic innovation in modern TCM.

Result Analysis
Print
Save
E-mail