1.Oxylipidomics Combined with Transcriptomics Reveals Mechanism of Jianpi Huogu Prescription in Treating Steroid-induced Osteonecrosis of Femoral Head in Rats
Lili WANG ; Qun LI ; Zhixing HU ; Qianqian YAN ; Liting XU ; Xiaoxiao WANG ; Chunyan ZHU ; Yanqiong ZHANG ; Weiheng CHEN ; Haijun HE ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):190-199
ObjectiveTo unveil the mechanism of Jianpi Huogu prescription (JPHGP) in ameliorating the dyslipidemia of steroid-induced osteonecrosis of the femur head (SONFH) by oxylipidomics combined with transcriptomics. MethodsSixty SD rats were assigned into normal, model, low-, medium-, and high-dose (2.5, 5, 10 g·kg-1, respectively) JPHGP, and Jiangushengwan (1.53 g·kg-1) groups. Lipopolysaccharide was injected into the tail vein at a dose of 20 μg·kg-1 on days 1 and 2, and methylprednisolone sodium succinate was injected at a dose of 40 mg·kg-1 into the buttock muscle on days 3 to 5. The normal group received an equal volume of normal saline. Drug administration by gavage began 4 weeks after the last injection, and samples were taken after administration for 8 weeks. Hematoxylin-eosin staining was conducted to reveal the histopathological changes of the femoral head, and the number of adipocytes, the rate of empty bone lacunae, and the trabecular area were calculated. Micro-computed tomography was used for revealing the histological and histomorphometrical changes of the femoral head. Enzyme-linked immunosorbent assay was employed to measure the serum levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB). At the same time, the femoral head was collected for oxylipidomic and transcriptomic detection. The differential metabolites and differential genes were enriched and analyzed, and the target genes regulating lipid metabolism were predicted. The predicted target proteins were further verified by molecular docking, immunohistochemistry, and Western blot. ResultsCompared with the normal group, the model group showcased thinning of the femoral head, trabecular fracture, karyopyknosis, subchondral cystic degeneration, increases in the number of adipocytes and the rate of empty bone lacunae (P<0.01), a reduction in the trabecular area (P<0.01), decreases in BMD, Tb.Th, Tb.N, and BV/TV, and increases in Tb.Sp and BS/BV (P<0.01). Compared with the model group, the JPHGP groups showed no obvious thinning of the femoral head or subchondroidal cystic degeneration. The high- and medium-dose JPHGP groups presented declines in the number of adipocytes and the rate of empty bone lacunae, an increase in the trabecular area (P<0.05, P<0.01), rises in BMD, Tb.Th, Tb.N, and BV/TV, and decreases in Tb.Sp and BS/BV (P<0.05, P<0.01). Compared with the normal group, the model group showcased raised serum levels of TG, TC, LDL, and ApoB and lowered serum levels of HDL and ApoA1 (P<0.01). Compared with the model group, the JPHGP groups had lowered serum levels of TG, TC, LDL, and ApoB (P<0.05, P<0.01) and a risen serum level of ApoA1 (P<0.05, P<0.01). Moreover, the serum level of HDL in the high-dose JPHGP group increased (P<0.01). A total of 19 different metabolites of disease set and drug set were screened out by oxylipidomics of the femoral head, and 119 core genes with restored expression were detected by transcriptomics. The enriched pathways were mainly concentrated in inflammation, lipids, apoptosis, and osteoclast differentiation. Molecular docking, immunohistochemistry, and Western blot results showed that compared with the normal group, the model group displayed increased content of 5-lipoxygenase (5-LO) and peroxisome proliferator-activated receptor γ (PPARγ) in the femoral head (P<0.01). Compared with the model group, medium- and high-dose JPHGP reduced the content of 5-LO and PPARγ (P<0.05, P<0.01). ConclusionJPHGP can restore the levels of oxidized lipid metabolites by regulating the 5-LO-PPARγ axis to treat SONFH in rats. Relevant studies provide experimental evidence for the efficacy mechanism of JPHGP in the treatment of SONFH.
2.Oxylipidomics Combined with Transcriptomics Reveals Mechanism of Jianpi Huogu Prescription in Treating Steroid-induced Osteonecrosis of Femoral Head in Rats
Lili WANG ; Qun LI ; Zhixing HU ; Qianqian YAN ; Liting XU ; Xiaoxiao WANG ; Chunyan ZHU ; Yanqiong ZHANG ; Weiheng CHEN ; Haijun HE ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):190-199
ObjectiveTo unveil the mechanism of Jianpi Huogu prescription (JPHGP) in ameliorating the dyslipidemia of steroid-induced osteonecrosis of the femur head (SONFH) by oxylipidomics combined with transcriptomics. MethodsSixty SD rats were assigned into normal, model, low-, medium-, and high-dose (2.5, 5, 10 g·kg-1, respectively) JPHGP, and Jiangushengwan (1.53 g·kg-1) groups. Lipopolysaccharide was injected into the tail vein at a dose of 20 μg·kg-1 on days 1 and 2, and methylprednisolone sodium succinate was injected at a dose of 40 mg·kg-1 into the buttock muscle on days 3 to 5. The normal group received an equal volume of normal saline. Drug administration by gavage began 4 weeks after the last injection, and samples were taken after administration for 8 weeks. Hematoxylin-eosin staining was conducted to reveal the histopathological changes of the femoral head, and the number of adipocytes, the rate of empty bone lacunae, and the trabecular area were calculated. Micro-computed tomography was used for revealing the histological and histomorphometrical changes of the femoral head. Enzyme-linked immunosorbent assay was employed to measure the serum levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB). At the same time, the femoral head was collected for oxylipidomic and transcriptomic detection. The differential metabolites and differential genes were enriched and analyzed, and the target genes regulating lipid metabolism were predicted. The predicted target proteins were further verified by molecular docking, immunohistochemistry, and Western blot. ResultsCompared with the normal group, the model group showcased thinning of the femoral head, trabecular fracture, karyopyknosis, subchondral cystic degeneration, increases in the number of adipocytes and the rate of empty bone lacunae (P<0.01), a reduction in the trabecular area (P<0.01), decreases in BMD, Tb.Th, Tb.N, and BV/TV, and increases in Tb.Sp and BS/BV (P<0.01). Compared with the model group, the JPHGP groups showed no obvious thinning of the femoral head or subchondroidal cystic degeneration. The high- and medium-dose JPHGP groups presented declines in the number of adipocytes and the rate of empty bone lacunae, an increase in the trabecular area (P<0.05, P<0.01), rises in BMD, Tb.Th, Tb.N, and BV/TV, and decreases in Tb.Sp and BS/BV (P<0.05, P<0.01). Compared with the normal group, the model group showcased raised serum levels of TG, TC, LDL, and ApoB and lowered serum levels of HDL and ApoA1 (P<0.01). Compared with the model group, the JPHGP groups had lowered serum levels of TG, TC, LDL, and ApoB (P<0.05, P<0.01) and a risen serum level of ApoA1 (P<0.05, P<0.01). Moreover, the serum level of HDL in the high-dose JPHGP group increased (P<0.01). A total of 19 different metabolites of disease set and drug set were screened out by oxylipidomics of the femoral head, and 119 core genes with restored expression were detected by transcriptomics. The enriched pathways were mainly concentrated in inflammation, lipids, apoptosis, and osteoclast differentiation. Molecular docking, immunohistochemistry, and Western blot results showed that compared with the normal group, the model group displayed increased content of 5-lipoxygenase (5-LO) and peroxisome proliferator-activated receptor γ (PPARγ) in the femoral head (P<0.01). Compared with the model group, medium- and high-dose JPHGP reduced the content of 5-LO and PPARγ (P<0.05, P<0.01). ConclusionJPHGP can restore the levels of oxidized lipid metabolites by regulating the 5-LO-PPARγ axis to treat SONFH in rats. Relevant studies provide experimental evidence for the efficacy mechanism of JPHGP in the treatment of SONFH.
3.Tissue-resident peripheral helper T cells foster hepatocellular carcinoma immune evasion by promoting regulatory B-cell expansion.
Haoyuan YU ; Mengchen SHI ; Xuejiao LI ; Zhixing LIANG ; Kun LI ; Yongwei HU ; Siqi LI ; Mingshen ZHANG ; Yang YANG ; Yang LI ; Linsen YE
Chinese Medical Journal 2025;138(17):2148-2158
BACKGROUND:
Peripheral helper T (T PH ) cells are uniquely positioned within pathologically inflamed non-lymphoid tissues to stimulate B-cell responses and antibody production. However, the phenotype, function, and clinical relevance of T PH cells in hepatocellular carcinoma (HCC) are currently unknown.
METHODS:
Blood, tumor, and peritumoral liver tissue samples from 39 HCC patients (Sep 2016-Aug 2017) and 101 HCC patients (Sep 2011-Dec 2012) at the Third Affiliated Hospital of Sun Yat-sen University were used. Flow cytometry was used to quantify the expression, phenotype, and function of T PH cells. Log-rank tests were performed to evaluate disease-free survival and overall survival in samples from 39 patients and 101 patients with HCC. T PH cells, CD19 + B cells, and T follicular helper (T FH ) cells were cultured separately in vitro or isolated from C57/B6L mice in vivo for functional assays.
RESULTS:
T PH cells highly infiltrated tumor tissues, which was correlated with tumor size, early recurrence, and shorter survival time. The tumor-infiltrated T PH cells showed a unique ICOS hi CXCL13 + IL-21 - MAF + BCL-6 - phenotype and triggered naïve B-cell differentiation into regulatory B cells. Triggering programmed cell death protein 1 (PD-1) induced the production of C-X-C motif chemokine ligand 13 (CXCL13) by T PH cells, which then suppressed tumor-specific immunity and promoted disease progression.
CONCLUSION
Our study reveals a novel regulatory mechanism of T PH cell-regulatory B-cell-mediated immunosuppression and provides an important perspective for determining the balance between the differentiation of protumorigenic T PH cells and that of antitumorigenic T FH cells in the HCC microenvironment.
Carcinoma, Hepatocellular/metabolism*
;
Liver Neoplasms/metabolism*
;
Humans
;
T-Lymphocytes, Helper-Inducer/metabolism*
;
Animals
;
Mice
;
Male
;
Female
;
Mice, Inbred C57BL
;
Middle Aged
;
B-Lymphocytes, Regulatory/metabolism*
;
Flow Cytometry
;
Interleukin-21
;
Aged
;
Chemokine CXCL13/metabolism*
4.In silico prediction of pK a values using explainable deep learning methods.
Chen YANG ; Changda GONG ; Zhixing ZHANG ; Jiaojiao FANG ; Weihua LI ; Guixia LIU ; Yun TANG
Journal of Pharmaceutical Analysis 2025;15(6):101174-101174
Negative logarithm of the acid dissociation constant (pK a) significantly influences the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of molecules and is a crucial indicator in drug research. Given the rapid and accurate characteristics of computational methods, their role in predicting drug properties is increasingly important. Although many pK a prediction models currently exist, they often focus on enhancing model precision while neglecting interpretability. In this study, we present GraFpK a, a pK a prediction model using graph neural networks (GNNs) and molecular fingerprints. The results show that our acidic and basic models achieved mean absolute errors (MAEs) of 0.621 and 0.402, respectively, on the test set, demonstrating good predictive performance. Notably, to improve interpretability, GraFpK a also incorporates Integrated Gradients (IGs), providing a clearer visual description of the atoms significantly affecting the pK a values. The high reliability and interpretability of GraFpK a ensure accurate pK a predictions while also facilitating a deeper understanding of the relationship between molecular structure and pK a values, making it a valuable tool in the field of pK a prediction.
5.Transcriptome Sequencing on Treatment of Kidney Deficiency and Blood Stasis-thin Endometrium in Rats with Bushen Huoxue Prescription Through Enema
Xuan ZHANG ; Wanting XIA ; Zhixing YIN ; Nana HAN ; Jinzhu HUANG ; Hang ZHOU ; Yi WANG ; Juan LI ; Qian ZENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(2):79-90
ObjectiveTo explore the mechanism of Bushen Huoxue enema in treating the rat model of kidney deficiency and blood stasis-thin endometrium (KDBS-TE) by transcriptome sequencing. MethodThe rat model of KDBS-TE was established by administration of tripterygium polyglycosides tablets combined with subcutaneous injection of adrenaline. The pathological changes of rat endometrium in each group were then observed. Three uterine tissue specimens from each of the blank group, model group, and Bushen Huoxue enema group were randomly selected for transcriptome sequencing. The differentially expressed circRNAs, lncRNAs, and miRNAs were screened, and the disease-related specific competitive endogenous RNA (ceRNA) regulatory network was constructed. Furthermore, the gene ontology (GO) functional annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed for the mRNAs in the network. ResultCompared with the blank group, the model group showed endometrial dysplasia, decreased endometrial thickness and endometrial/total uterine wall thickness ratio (P<0.01), and differential expression of 18 circRNAs, 410 lncRNAs, and 7 miRNAs. Compared with the model group, the enema and estradiol valerate groups showed improved endometrial morphology and increased endometrial thickness and ratio of endometrial to total uterine wall thickness (P<0.05). In addition, 21 circRNAs, 518 lncRNAs, and 17 miRNAs were differentially expressed in the enema group. The disease-related specific circRNA-miRNA-mRNA regulatory network composed of 629 nodes and 664 edges contained 2 circRNAs, 34 miRNAs, and 593 mRNAs. The lncRNA-miRNA-mRNA regulatory network composed of 180 nodes and 212 edges contained 5 lncRNAs, 10 miRNAs, and 164 mRNAs. The mNRAs were mainly enriched in Hippo signaling pathway, autophagy-animal, axon guidance, etc. ConclusionBushen Huoxue enema can treat KDBS-TE in rats by regulating specific circRNAs, lncRNAs, and miRNAs in the uterus and the ceRNA network.
6.Influencing factors of early hypocalcemia after microwave ablation for treating secondary hyperparathyroidism
Jiahao WU ; Chun LI ; Zhixing LIU ; Ga LIU ; Jiajie LYU
Chinese Journal of Medical Imaging Technology 2024;40(9):1327-1331
Objective To observe the influencing factors of early hypocalcemia after microwave ablation(MWA)for treating secondary hyperparathyroidism(SHPT).Methods Data of 82 SHPT patients who underwent MWA were retrospectively analyzed.The patients were divided into hypocalcemia group(n=36)and non-hypocalcemia group(n=46)based on presence of early hypocalcemia after MWA or not.Patients'age,gender,body mass index(BMI),dialysis method,dialysis time and number of lesions were compared between groups,so were baseline blood calcium,blood phosphorus,intact parathyroid hormone(iPTH),alkaline phosphatase(ALP),hemoglobin,albumin,creatinine,uric acid and 2 5-hydroxy vitamin D3.Logistic analysis was performed to screen the influencing factors of early hypocalcemia after MWA.Results Significant differences of dialysis methods,number of lesions,blood calcium,iPTH and ALP were found between groups(all P<0.05).Univariate and multivariate logistic regression analysis showed that the number of lesions,iPTH and ALP were all independent influencing factors of early hypocalcemia after MWA for treating SHPT(all P<0.05).Conclusion The number of lesions,iPTH and ALP were influencing factors of early hypocalcemia after MWA for treating SHPT.
7.Efficacy of autofluorescence point-spectral analysis combined with the immune colloidal gold technique for the detection of ectopic microscopic parathyroid glands to guide surgery for secondary hyperparathyroidism
Kun PENG ; Baozhong YAO ; Hongcun CHEN ; Jun ZHANG ; Wenzhong BAO ; Wenbo LI ; Weitao SONG ; Sailong SANG ; Li LIN ; Zhixing JIA ; Liang LI
The Journal of Practical Medicine 2024;40(20):2905-2912
Objective To evaluate the intraoperative identification of ectopic parathyroid tissue in the central neck region using autofluorescence point-spectral analysis(AFPSA)combined with immune colloidal gold technique(ICGT),for guiding total parathyroidectomy(TPTX)or clean parathyroidectomy(CPTX)in the management of secondary hyperparathyroidism(SHPT).Methods Retrospectively collected and compared the clinical data of 64 patients with SHPT from October 2019 to June 2023.In the observation group,TPTX was performed as the initial procedure in 36 cases,followed by sampling of suspicious targets using AFPSA in the central neck area and subsequent detection through ICGT.CPTX was then conducted if a positive result was obtained.On the other hand,the control group consisted of 28 cases where only TPTX was performed without any additional tests during surgery.The surgical data,parathyroid hormone(PTH)levels,blood calcium levels,blood phosphorus levels,alkaline phosphatase(ALP)levels,regression of clinical symptoms,changes in parathyroid function and occurrence of hypocalcemia were compared between these two groups.Results In the observation group,there were 9 cases of AFPSA-ICGT positivity,including 2 left-sided cases,4 right-sided cases,and 3 thymic cases;among these posi-tive cases,there were a total of 10 locations with mildly hyperplastic or nonhyperplastic microscopic parathyroid tissue.The difference in the number of total parathyroid glands removed(including ectopic)between the two groups was statistically significant(P<0.05).At both 3 and 6 months postoperatively,ALP levels in the observation group were significantly lower than those in the control group(P<0.01 and P<0.001 respectively);at 6 months postoperatively,differences in PTH and blood phosphorus levels between the two groups were also statistically significant(P<0.05 and P<0.001 respectively).Joint bone pain and skin itching recurred in some patients within the control group at six months after surgery(P<0.05),whereas recurrence of SHPT was less frequent within the observation group compared to controls(P<0.05);however,no statistically significant differences were observed regarding postoperative hypoparathyroidism or hyperparathyroidism as well as hypocalcemia between either groups.Conclusion The AFPSA-ICGT intraoperative test can be utilized to guide surgery for SHPT,enabling accurate and efficient identification as well as safe targeting of parathyroid tissues that may not exhibit obvious hyperplasia in the central cervical region.
8.The factors affecting the prognosis of complex intracranial aneurysms treated with pipeline flow-direction device and the construction of a nomogram prediction model
Ziyin ZHANG ; Dong QIU ; Ping ZHENG ; Yang AN ; Tao ZHANG ; Xuesong TANG ; Zhixing YAN ; Suwen LI ; Liping YIN ; Yongji JIANG ; Ligang HU ; Jingfeng TANG
Journal of Interventional Radiology 2024;33(9):944-949
Objective To investigate the factors influencing the prognosis of complex intracranial aneurysms treated with pipeline flow-directed device(PED)and to develop a nomogram prediction model.Methods The clinical data of a total of 98 patients with complex intracranial aneurysm,who were admitted to the Anyue County People's Hospital or the Second Affiliated Hospital of Guilin Medical College of China from January 2021 to April 2023 to receive PED treatment,were retrospectively analyzed.The influencing factors that might affect the prognosis of patients with complex intracranial aneurysm were collected.According to the modified Rankin Scale(mRS)score,the patients were divided into good prognosis group(being defined as mRS ≤2 points)and poor prognosis group(being defined as mRS>2 points).The clinical data were compared between the two groups,and a nomogram model was established and validated.Results In the 98 patients,poor prognosis was seen in 10(10.20%).The differences in age,history of hypertension,history of diabetes mellitus,clopidogrel resistance,Fisher classification,repeated aneurysm rupture,aneurysm location,aneurysm size,aneurysm neck,multiple lesions,and Hunt-Hess grade on admission between good prognosis group and poor prognosis group were statistically significant(all P<0.05).Multivariate analysis revealed that history of hypertension,clopidogrel resistance,repeated aneurysm rupture,aneurysm location,multiple lesions,and Hunt-Hess grade were the independent factors influencing the prognosis of patients with complex intracranial aneurysm after receiving PED treatment.The AUC of the nomogram model in predicting the prognosis of PED for complex intracranial aneurysms was 0.849(95%CI=0.758-0.939).The predicted curves of the model group and validation group were basically fitted to the standard curves.The results of the decision curve analysis showed that the net benefit to patients was greater than 0 when the probability threshold of the nomogram model for predicting a poor prognosis of PED for complex intracranial aneurysms was 0.10-0.90.Conclusion The factors causing poor prognosis of PED for complex intracranial aneurysms mainly include history of hypertension,clopidogrel resistance,repeated aneurysm rupture,etc.The nomogram model established in this study can predict the risk of poor prognosis in patients with complicated intracranial aneurysm after receiving PED treatment.
10.Si-Wu-Tang attenuates liver fibrosis via regulating lncRNA H19-dependent pathways involving cytoskeleton remodeling and ECM deposition.
Jiaorong QU ; Xiaoyong XUE ; Zhixing WANG ; Zhi MA ; Kexin JIA ; Fanghong LI ; Yinhao ZHANG ; Ruiyu WU ; Fei ZHOU ; Piwen ZHAO ; Xiaojiaoyang LI
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):31-46
Liver fibrosis is a dynamic wound-healing response characterized by the agglutination of the extracellular matrix (ECM). Si-Wu-Tang (SWT), a traditional Chinese medicine (TCM) formula, is known for treating gynecological diseases and liver fibrosis. Our previous studies demonstrated that long non-coding RNA H19 (H19) was markedly upregulated in fibrotic livers while its deficiency markedly reversed fibrogenesis. However, the mechanisms by which SWT influences H19 remain unclear. Thus, we established a bile duct ligation (BDL)-induced liver fibrosis model to evaluate the hepatoprotective effects of SWT on various cells in the liver. Our results showed that SWT markedly improved ECM deposition and bile duct reactions in the liver. Notably, SWT relieved liver fibrosis by regulating the transcription of genes involved in the cytoskeleton remodeling, primarily in hepatic stellate cells (HSCs), and influencing cytoskeleton-related angiogenesis and hepatocellular injury. This modulation collectively led to reduced ECM deposition. Through extensive bioinformatics analyses, we determined that H19 acted as a miRNA sponge and mainly inhibited miR-200, miR-211, and let7b, thereby regulating the above cellular regulatory pathways. Meanwhile, SWT reversed H19-related miRNAs and signaling pathways, diminishing ECM deposition and liver fibrosis. However, these protective effects of SWT were diminished with the overexpression of H19 in vivo. In conclusion, our study elucidates the underlying mechanisms of SWT from the perspective of H19-related signal networks and proposes a potential SWT-based therapeutic strategy for the treatment of liver fibrosis.
Humans
;
RNA, Long Noncoding/genetics*
;
Liver Cirrhosis/genetics*
;
Liver/metabolism*
;
Hepatic Stellate Cells/pathology*
;
MicroRNAs/metabolism*
;
Extracellular Matrix/metabolism*
;
Drugs, Chinese Herbal

Result Analysis
Print
Save
E-mail