1.Inhibition of Angiogenesis by Sanguisorbae Radix and Sophorae Flos in Ulcerative Colitis Mice by Regulating PI3K/Akt Signaling Pathway
Yuzhuo WEI ; Li LIU ; Shu BU ; Yongqi WANG ; Zhiwei MIAO ; Yi XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):40-50
ObjectiveTo explore the potential mechanism of action of the combination of Sanguisorbae Radix-Sophorae Flos (DH) in the treatment of ulcerative colitis (UC) using network pharmacology methods and molecular docking technology. MethodsNetwork pharmacology analysis was utilized to predict the potential targets of DH for the treatment of UC. The therapeutic effects were experimentally validated by inducing a UC model in mice with 3% dextran sulfate sodium (DSS). The experimental groups were the normal group, the model group, the salazosulfapyridine group (100 mg·kg-1), and the low, medium, and high dose groups of DH (1.2, 2.4, and 4.8 g·kg-1). The efficacy of the treatment was assessed through the general condition of the mice, histopathological examination, and the expression levels of inflammatory markers in the colon. The effect of DH on angiogenesis was explored by messenger RNA (mRNA) detection of colonic angiogenesis-related mediators, vascular endothelial growth factor (VEGF) immunohistochemistry, microvessel density (MVD) detection, and transmission electron microscopy. The phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) signaling pathway proteins were quantitatively analyzed through Western blot to assess whether the suppression of pathological angiogenesis by DH is associated with this pathway. ResultsNetwork pharmacological analysis yielded 112 potential core therapeutic targets for the treatment of UC with DH, of which the core targets were tumor protein 53 (TP53), JUN, interleukin (IL)-6, Akt1, and tumor necrosis factor (TNF). Compared with the normal group, mice in the model group showed significant weight loss, colon shortening, and high DAI score, increased expression of inflammatory factors IL-6, IL-1β, and TNF-α, as well as increased mRNA expression levels of angiogenesis-related mediators VEGF, vascular cell adhesion molecule 1 (VCAM1), angiotensin 1 (Ang1), matrix metalloproteinase (MMP)-1, MMP-2, and MMP-9. The positive expression of CD31 and VEGF in colonic tissue increased, and the protein expression of the PI3K/Akt pathway was increased (P<0.05). The endothelial cells of the colonic mucosa and the colonic vasculature were severely damaged. Compared with the model group, mice in the DH groups had significantly reduced weight loss and colon shortening, lower DAI scores, and a significant decrease in mRNA expression of inflammatory factors and angiogenesis-related mediators. In addition, there was decreased positive expression of CD31 and VEGF in colonic tissue and decreased protein expression of the PI3K/Akt pathway (P<0.05). ConclusionNetwork pharmacology, molecular docking, and experimental validation are applied to explore the mechanism of action of DH in the treatment of UC, and it is found that DH is able to improve the symptoms of colitis and inhibit the pathological angiogenesis in UC mice. Its action might be related to affecting the PI3K/Akt pathway.
2.Effect and Mechanism of Angelicae Sinensis Radix-Polygonati Rhizoma Herb Pair in Treatment of Simple Obesity
Wenjing LI ; Zhongyu WANG ; Yongxin HUANG ; Jingjing XU ; Ying DING ; You WU ; Zhiwei QI ; Ruifeng YANG ; Xiaotong YANG ; Lili WU ; Lingling QIN ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):70-79
ObjectiveTo preliminarily explore the active components and target pathways of Angelicae Sinensis Radix-Polygonati Rhizoma (ASR-PR) herb pair in the treatment of simple obesity through network pharmacology and molecular docking, and to verify and investigate its mechanism of action via animal experiments. MethodsThe chemical constituents and targets of ASR and PR were predicted using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Targets related to simple obesity were identified by retrieving the GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), and DisGeNET databases. The intersection of drug and disease targets was used to construct an active component-target network using Cytoscape software. This network was imported into the STRING database to construct a protein-protein interaction (PPI) network, and topological analysis was conducted to identify core genes. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and mapping were performed using the DAVID database and the Microbioinformatics platform. AutoDock 1.5.7 software was used to perform molecular docking between the top five active components and core targets. An animal model of simple obesity was established by feeding C57BL/6J mice a high-fat diet. The mice were administered ASR (2.06 g·kg-1), PR (2.06 g·kg-1), or ASR-PR (4.11 g·kg-1) for 10 weeks, while the model group received an equal volume of purified water by gavage. After the administration period, the mice were sacrificed to measure body fat weight and serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Hematoxylin-eosin (HE) staining was used to observe histopathological sections of liver and adipose tissue. Serum levels of leptin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression levels of epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3) in liver tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsNetwork pharmacology and molecular docking results indicated that the treatment of simple obesity by ASR-PR may involve the regulation of protein expression of core targets EGFR and STAT3 by its main components MOL009760 (Siberian glycoside A_qt), MOL003889 (methyl protodioscin_qt), MOL009766 (resveratrol), MOL006331 (4′,5-dihydroxyflavone), and MOL004941 (baicalin), thereby modulating the PI3K/Akt and JAK/STAT signaling pathways. The animal experiment results showed that compared with the normal group, the model group had significantly increased body weight, body fat weight, and serum levels of TG, TC, TNF-α, IL-6, and leptin (P<0.01). EGFR mRNA expression was significantly elevated (P<0.05), while STAT3 mRNA expression was significantly decreased (P<0.01). Histological analysis revealed disordered hepatic architecture in the model group, with pronounced lipid vacuoles, cytoplasmic loosening, lipid accumulation, and steatosis. Adipocytes in white adipose tissue (WAT) and brown adipose tissue (BAT) of the model group exhibited markedly increased diameters, reduced cell counts per unit area, and irregular morphology. Compared with the model group, the ASR-PR group significantly reduced body weight, body fat weight, serum TC, IL-6, TNF-α, leptin levels, and EGFR mRNA expression (P<0.01). TG levels were also significantly decreased (P<0.05), while STAT3 mRNA expression was significantly increased (P<0.01). Histopathological improvements included reduced size and number of hepatic lipid vacuoles and restoration of liver cell morphology toward that of the normal group. The diameter of adipocytes significantly decreased, and the number of adipocytes per unit area increased. ConclusionASR-PR may regulate the expression of key target proteins such as EGFR and STAT3 via its core active components, modulate the PI3K/Akt and JAK/STAT signaling pathways, repair damaged liver and adipose tissues, and thereby alleviate the progression of obesity in mice.
3.Inhibition of Angiogenesis by Sanguisorbae Radix and Sophorae Flos in Ulcerative Colitis Mice by Regulating PI3K/Akt Signaling Pathway
Yuzhuo WEI ; Li LIU ; Shu BU ; Yongqi WANG ; Zhiwei MIAO ; Yi XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):40-50
ObjectiveTo explore the potential mechanism of action of the combination of Sanguisorbae Radix-Sophorae Flos (DH) in the treatment of ulcerative colitis (UC) using network pharmacology methods and molecular docking technology. MethodsNetwork pharmacology analysis was utilized to predict the potential targets of DH for the treatment of UC. The therapeutic effects were experimentally validated by inducing a UC model in mice with 3% dextran sulfate sodium (DSS). The experimental groups were the normal group, the model group, the salazosulfapyridine group (100 mg·kg-1), and the low, medium, and high dose groups of DH (1.2, 2.4, and 4.8 g·kg-1). The efficacy of the treatment was assessed through the general condition of the mice, histopathological examination, and the expression levels of inflammatory markers in the colon. The effect of DH on angiogenesis was explored by messenger RNA (mRNA) detection of colonic angiogenesis-related mediators, vascular endothelial growth factor (VEGF) immunohistochemistry, microvessel density (MVD) detection, and transmission electron microscopy. The phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) signaling pathway proteins were quantitatively analyzed through Western blot to assess whether the suppression of pathological angiogenesis by DH is associated with this pathway. ResultsNetwork pharmacological analysis yielded 112 potential core therapeutic targets for the treatment of UC with DH, of which the core targets were tumor protein 53 (TP53), JUN, interleukin (IL)-6, Akt1, and tumor necrosis factor (TNF). Compared with the normal group, mice in the model group showed significant weight loss, colon shortening, and high DAI score, increased expression of inflammatory factors IL-6, IL-1β, and TNF-α, as well as increased mRNA expression levels of angiogenesis-related mediators VEGF, vascular cell adhesion molecule 1 (VCAM1), angiotensin 1 (Ang1), matrix metalloproteinase (MMP)-1, MMP-2, and MMP-9. The positive expression of CD31 and VEGF in colonic tissue increased, and the protein expression of the PI3K/Akt pathway was increased (P<0.05). The endothelial cells of the colonic mucosa and the colonic vasculature were severely damaged. Compared with the model group, mice in the DH groups had significantly reduced weight loss and colon shortening, lower DAI scores, and a significant decrease in mRNA expression of inflammatory factors and angiogenesis-related mediators. In addition, there was decreased positive expression of CD31 and VEGF in colonic tissue and decreased protein expression of the PI3K/Akt pathway (P<0.05). ConclusionNetwork pharmacology, molecular docking, and experimental validation are applied to explore the mechanism of action of DH in the treatment of UC, and it is found that DH is able to improve the symptoms of colitis and inhibit the pathological angiogenesis in UC mice. Its action might be related to affecting the PI3K/Akt pathway.
4.Effect and Mechanism of Angelicae Sinensis Radix-Polygonati Rhizoma Herb Pair in Treatment of Simple Obesity
Wenjing LI ; Zhongyu WANG ; Yongxin HUANG ; Jingjing XU ; Ying DING ; You WU ; Zhiwei QI ; Ruifeng YANG ; Xiaotong YANG ; Lili WU ; Lingling QIN ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):70-79
ObjectiveTo preliminarily explore the active components and target pathways of Angelicae Sinensis Radix-Polygonati Rhizoma (ASR-PR) herb pair in the treatment of simple obesity through network pharmacology and molecular docking, and to verify and investigate its mechanism of action via animal experiments. MethodsThe chemical constituents and targets of ASR and PR were predicted using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Targets related to simple obesity were identified by retrieving the GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), and DisGeNET databases. The intersection of drug and disease targets was used to construct an active component-target network using Cytoscape software. This network was imported into the STRING database to construct a protein-protein interaction (PPI) network, and topological analysis was conducted to identify core genes. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and mapping were performed using the DAVID database and the Microbioinformatics platform. AutoDock 1.5.7 software was used to perform molecular docking between the top five active components and core targets. An animal model of simple obesity was established by feeding C57BL/6J mice a high-fat diet. The mice were administered ASR (2.06 g·kg-1), PR (2.06 g·kg-1), or ASR-PR (4.11 g·kg-1) for 10 weeks, while the model group received an equal volume of purified water by gavage. After the administration period, the mice were sacrificed to measure body fat weight and serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Hematoxylin-eosin (HE) staining was used to observe histopathological sections of liver and adipose tissue. Serum levels of leptin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression levels of epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3) in liver tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsNetwork pharmacology and molecular docking results indicated that the treatment of simple obesity by ASR-PR may involve the regulation of protein expression of core targets EGFR and STAT3 by its main components MOL009760 (Siberian glycoside A_qt), MOL003889 (methyl protodioscin_qt), MOL009766 (resveratrol), MOL006331 (4′,5-dihydroxyflavone), and MOL004941 (baicalin), thereby modulating the PI3K/Akt and JAK/STAT signaling pathways. The animal experiment results showed that compared with the normal group, the model group had significantly increased body weight, body fat weight, and serum levels of TG, TC, TNF-α, IL-6, and leptin (P<0.01). EGFR mRNA expression was significantly elevated (P<0.05), while STAT3 mRNA expression was significantly decreased (P<0.01). Histological analysis revealed disordered hepatic architecture in the model group, with pronounced lipid vacuoles, cytoplasmic loosening, lipid accumulation, and steatosis. Adipocytes in white adipose tissue (WAT) and brown adipose tissue (BAT) of the model group exhibited markedly increased diameters, reduced cell counts per unit area, and irregular morphology. Compared with the model group, the ASR-PR group significantly reduced body weight, body fat weight, serum TC, IL-6, TNF-α, leptin levels, and EGFR mRNA expression (P<0.01). TG levels were also significantly decreased (P<0.05), while STAT3 mRNA expression was significantly increased (P<0.01). Histopathological improvements included reduced size and number of hepatic lipid vacuoles and restoration of liver cell morphology toward that of the normal group. The diameter of adipocytes significantly decreased, and the number of adipocytes per unit area increased. ConclusionASR-PR may regulate the expression of key target proteins such as EGFR and STAT3 via its core active components, modulate the PI3K/Akt and JAK/STAT signaling pathways, repair damaged liver and adipose tissues, and thereby alleviate the progression of obesity in mice.
5.Incidence of statutory and keymonitored infectious diseases among students in Beijing from 2016 to 2020
XU Wenjie, BAI Chengxu, CHEN Dongni, XIA Zhiwei, WU Shuangsheng, GUO Xin, YANG Peng
Chinese Journal of School Health 2025;46(4):592-596
Objective:
To analyze the incidence of statutory and keymonitored infectious diseases among school students in Beijing from 2016 to 2020, so as to provide a reference for developing the prevention and control of infectious diseases in schools.
Methods:
A descriptive statistical analysis was conducted on student cases aged 6-22 years in Beijing from 2016 to 2020 selected from the China Disease Surveillance Information Reporting Management System. Rate comparisons were performed using the 2 test and trend 2 test.
Results:
From 2016 to 2020, the overall incidence of statutory and keymonitored infectious diseases among students in Beijing showed an upward trend (χ2trend=582.42), the incidence rates of Category B and other infectious diseases exhibited a downward trend (χ2trend=82.71, 18.34), while Category C infectious diseases demonstrated a significant upward trend (χ2trend=911.75) (P<0.01). Among Category B infectious diseases, scarlet fever, bacillary dysentery, tuberculosis, and HIV/AIDS were predominant, with annual average incidence rates of 61.33/100 000, 35.38/100 000, 13.88/100 000, and 3.78/100 000, respectively. Except for HIV/AIDS, the reported incidence rates of other infectious diseases showed a declining trend. Among Category C infectious diseases, influenza, other infectious diarrhea, hand-foot-mouth disease, and mumps were predominant, with annual average incidence rates of 956.13/100 000, 114.39/100 000, 111.37/100 000, and 28.24/100 000, respectively. Influenza showed a significant upward trend (χ2trend=1 508.30), while the other infectious diarrhea, hand-foot-mouth disease, and mumps exhibited a downward trend (χ2trend=13.84, 25.78, 6.13) (P<0.05). Among other infectious diseases, varicella was predominant (χ2trend=17.47, P<0.05). Scarlet fever, influenza, hand-foot-mouth disease, and mumps had higher incidence rates among primary and middle school students; other infectious diarrhea and varicella were more prevalent among high school students; tuberculosis and bacillary dysentery were more common among high school and college students; and HIV/AIDS had higher incidence rates among college and high school students.
Conclusion
From 2016 to 2020, the incidence of Category B infectious diseases among students in Beijing showed a declining trend, while influenza, a Category C infectious disease, exhibited a significant upward trend.
6.Isolation and protection of organs at risk by crosslinked sodium hyaluronate gel during brachytherapy
Jianjian LIU ; Yan ZHANG ; Zhiwei CUI ; Dongfang WANG ; Xu LIU ; Shenglin YANG ; Qian CHAI ; Fenglin LIU
Chinese Journal of Tissue Engineering Research 2025;29(4):700-706
BACKGROUND:Crosslinked sodium hyaluronate gel has good mechanical property,biocompatibility,and biodegradability,and can be used as an isolated protective material in tumor radiation therapy to protect endangered organs from damage caused by excess radiation dose. OBJECTIVE:To investigate the safety and efficacy of crosslinked sodium hyaluronate gel in reducing the dose of radiation to dangerous organs during brachytherapy. METHODS:A total of 16 specific pathogen-free Kunming mice of the same age and similar body weight were selected as experimental subjects and divided into experimental group and control group by the random number table method,with 8 mice in each group.125I seeds were implanted subcutaneously in the back of mice in the experimental group,and then crosslinked sodium hyaluronate gel was injected around the radioactive particles.Only 125I seeds were implanted subcutaneously in the back of mice in the control group.After injection,the distance between the radioactive particles and the epidermis was measured by spiral CT scan,and the surface radiation dose was measured by radiation dosimeter.Within 10 weeks after injection,the growth state,survival rate,skin radiation damage,and gel retention of mice were observed. RESULTS AND CONCLUSION:(1)Spiral CT scan showed that the implanted gel was relatively concentrated and created an effective distance between the radioactive seeds and the epidermis.The body surface radiation dose of the experimental group was significantly lower than that of the control group(P<0.01).(2)During the experimental observation period,mice in both groups survived;mice in the control group showed obvious irritability and other unstable behavior in the late experimental period,and some mice in the experimental group showed similar behavior.The daily food intake of mice in the two groups had no significant change,and the body mass showed the same increasing trend.After implantation of radioactive seeds,the two groups of mice showed different degrees of radioactive skin injury.From day 23 after injection to the end of the experiment,the skin radiation injury score of the experimental group was lower than that of the control group(P<0.01).At week 10 after implantation,6 mice in the experimental group had no obvious gel residue under their skin,and 2 mice had a very small amount of scattered gel-like samples under their skin.(3)Therefore,the crosslinked sodium hyaluronate injection technique can increase the space between the radioactive target area of 125I seeds and the organ at risk outside the target through physical space occupying,which can effectively reduce the dose of the organ at risk,and play a role in the isolation and protection of the organ at risk.
7.Biological function of tRNA-derived small RNA and its expression and clinical significance in liver diseases
Yinli LI ; Yan XU ; Zhiwei GUAN ; Lu MENG ; Yitong QU ; Jianli QIU
Journal of Clinical Hepatology 2025;41(6):1227-1234
Liver diseases cannot be easily detected in the early stage, and although invasive diagnostic methods, such as liver biopsy, are relatively accurate, they tend to have a low degree of acceptance, which greatly limits the improvement in diagnosis and treatment techniques for liver diseases. Therefore, it is of great importance to search for new biomarkers and therapeutic targets. As an emerging biomarker for liquid biopsy, tRNA-derived small RNA (tsRNA) is abnormally expressed in various liver diseases including viral hepatitis, fatty liver disease, liver injury, and liver cancer, and it can affect the development and progression of liver diseases by regulating the biological functions such as gene expression, epigenetic regulation, and protein translation. This article reviews the origin, classification, and biological function of tsRNA, as well as the research advances in tsRNA as biomarkers and potential therapeutic targets for liver diseases, so as to provide ideas for the early diagnosis and treatment of liver diseases.
8.RADICAL: a rationally designed ion channel activated by ligand for chemogenetics.
Heng ZHANG ; Zhiwei ZHENG ; Xiaoying CHEN ; Lizhen XU ; Chen GUO ; Jiawei WANG ; Yihui CUI ; Fan YANG
Protein & Cell 2025;16(2):136-142
9.Effects of high intensity interval training on glucose metabolism, cortisol and sleep quality among college students with comorbid depressive symptoms and obesity
Chinese Journal of School Health 2025;46(12):1721-1726
Objective:
To explore the intervention effects of high intensity interval training (HIIT) on glucose metabolism, cortisol (Cor), and sleep quality among college students with comorbid depressive symptoms and obesity, so as to provide a reference for improving sleep quality among college students with comorbid depressive symptoms and obesity.
Methods:
In March 2023, 45 college students with comorbid depressive symptoms and obesity were recruited and randomly assigned to an exercise group ( n =23) and a control group ( n =22) by random number table method. The exercise group received HIIT intervention for 12 weeks, three times a week, while the control group received no intervention. Blood samples were collected from participants to measure fasting insulin (FINS), fasting blood glucose (FBG), homeostatic model assessment of insulin resistance (HOMA-IR), Cor, and Pittsburgh Sleep Quality Index (PSQI) before and after intervention. Statistical analysis was performed using t-test, repeated measures analysis of variance (ANOVA), simple effect analysis.
Results:
The repeated measures ANOVA revealed statistically significant time×group interaction effects for body composition (weight, body mass index, percentage of body fat, fat mass, waist to hip ratio), depressive symptoms, PSQI scores and its subdimensions (subjective sleep quality, sleep onset time, sleep efficiency, sleep disorders, daytime dysfunction), as well as FBG, FINS, and HOMA-IR between the exercise group and control group before and after intervention ( F =7.10-53.38, all P <0.05). Simple effect analysis showed that compared to the control group, the exercise group demonstrated significant improvements in body composition (body mass index, fat mass, waist to hip ratio), depressive symptoms, PSQI scores and its sub dimensions (subjective sleep quality, sleep onset time, sleep efficiency, sleep disorders, daytime dysfunction), FBG, FINS, HOMA-IR, and Cor (all P <0.05).
Conclusion
HIIT can improve the sleep quality of college students with comorbid depressive symptoms and obesity by enhancing glucose metabolism and regulating Cor levels.
10.Multiple Liver Metastases in Malignant Insulinoma: A Case Report
Jinhao LIAO ; Yuting GAO ; Xiang WANG ; Zhiwei WANG ; Qiang XU ; Yuxing ZHAO ; Yue CHI ; Jiangfeng MAO ; Hongbo YANG
Medical Journal of Peking Union Medical College Hospital 2024;15(4):968-972
Malignant insulinoma is a kind of rare and challenging neuroendocrine tumor. It is often accompanied by distant metastasis, among which liver metastasis is most common, and the prognosis is often non-promising. In this paper, we report a case of multiple liver metastases from malignant insulinoma. The patient, a 70-year-old male, was admitted to the hospital due to "episodic consciousness disorder for more than four months." Blood glucose monitoring revealed recurrent hypoglycemia in the early morning, after meals, and at night. Pancreatic perfusion CT and dynamic enhanced MRI of the liver revealed a mass in the uncinate process of the pancreatic head and multiple liver metastases. Percutaneous liver biopsy confirmed the diagnosis of insulinoma. After multidisciplinary discussions, hepatic artery embolization and radiofrequency ablation were performed in stages, in combination with everolimus treatment. Thereafter, the enhanced CT demonstrated that some liver metastases shrank. The patient had regular meals, and the blood sugar gradually increased and remained normal thereafter. This article discusses this case's clinical characteristics and multidisciplinary collaborative diagnosis and treatment, aiming to provide experience for the comprehensive clinical diagnosis and treatment of malignant insulinoma patients.


Result Analysis
Print
Save
E-mail