1.Joint Relation Extraction of Famous Medical Cases with CasRel Model Combining Entity Mapping and Data Augmentation
Yuxin LI ; Xinghua XIANG ; Hang YANG ; Dasheng LIU ; Jiaheng WANG ; Zhiwei ZHAO ; Jiaxu HAN ; Mengjie WU ; Qianzi CHE ; Wei YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):218-225
ObjectiveTo address the challenges of unstructured classical Chinese expressions, nested entity relationships, and limited annotated data in famous traditional Chinese medicine(TCM) case records, this study proposes a joint relation extraction framework that integrates data augmentation and entity mapping, aiming to support the construction of TCM diagnostic knowledge graphs and clinical pattern mining. MethodsWe developed an annotation structure for entities and their relationships in TCM case texts and applied a data augmentation strategy by incorporating multiple ancient texts to expand the relation extraction dataset. A cascade binary tagging framework for relation triple extraction(CasRel) model for TCM semantics was designed, integrating a pre-trained bidirectional encoder representations from transformers(BERT) layer for classical TCM texts to enhance semantic representation, and using a head entity-relation-tail entity mapping mechanism to address entity nesting and relation overlapping issues. ResultsExperimental results showed that the CasRel model, combining data augmentation and entity mapping, outperformed the pipeline-based Bert-Radical-Lexicon(BRL)-bidirectional long short-term memory(BiLSTM)-Attention model. The overall precision, recall, and F1-score across 12 relation types reached 65.73%, 64.03%, and 64.87%, which represent improvements of 14.26%, 7.98%, and 11.21% compared to the BRL-BiLSTM-Attention model, respectively. Notably, the F1-score for tongue syndrome relations increased by 22.68%(69.32%), and the prescription-syndrome relations performed the best with the F1-score of 70.10%. ConclusionThe proposed framework significantly improves the semantic representation and complex dependencies in TCM texts, offering a reusable technical framework for structured mining of TCM case records. The constructed knowledge graph can support clinical syndrome differentiation, prescription optimization, and drug compatibility, providing a methodological reference for TCM artificial intelligence research.
2.Construction of a community-family management model for older adults with mild cognitive impairment
Junli CHEN ; Han ZHANG ; Yefan ZHANG ; Yanqiu ZHANG ; Runguo GAO ; Qianqian GAO ; Weiqin CAI ; Haiyan LI ; Lihong JI ; Zhiwei DONG ; Qi JING
Chinese Journal of Rehabilitation Theory and Practice 2026;32(1):90-100
ObjectiveTo develop a community-family management model for older adults with mild cognitive impairment (MCI) and to formulate detailed application specifications, and to fully leverage the initiative of communities and families under limited resource conditions, for achieving community-based early detection and early intervention for older adults with MCI. MethodsA systematic literature review was conducted to identify pertinent publications. Corpus-based research methodologies were employed to extract, refine, integrate and synthesize management elements, thereby establishing the specific content and service processes for each stage of the management model. Utilizing the 5W2H analytical framework, essential elements such as management stakeholders, target populations, content and methods for each stage were delineated. The model and its application guidelines were finalized through expert consultation and demonstration. ResultsAn expert evaluation of the management model yielded mean scores of 4.84, 4.32 and 4.84 for acceptability, feasibility and systematicity, respectively. By integrating the identified core elements with expert ratings and feedback, the final iteration of the community-family management model for older adults with MCI was formulated. This model comprised of five stages: screening and identification, comprehensive assessment, intervention planning, monitoring and referral pathways to ensure implementation, and enhanced support for communities, family members and caregivers. Additionally, it included 18 specific application guidelines. ConclusionThe proposed management model may theoretically help delay cognitive decline, improve cognitive function and potentially promote reversal from MCI to normal cognition. It may also enhance the awareness and coping capacity of older adults and their families, strengthen community healthcare professionals' ability to early identify and manage MCI.
3.An excerpt of ESMO clinical practice guideline interim update on the management of biliary tract cancer in 2025
Delong QIN ; Yue TANG ; Zonglong LI ; Jialu CHEN ; Zhaohui TANG ; Zhiwei QUAN
Journal of Clinical Hepatology 2025;41(4):625-627
In January 2025, the European Society for Medical Oncology (ESMO) released the ESMO clinical practice guideline interim update on the management of biliary tract cancer as a supplementary update to Biliary tract cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up published in November 2022. This interim update mainly revises the latest evidence-based medical recommendations in the key fields of molecular diagnostics and clinical management since the release of the original guidelines, and it is not a comprehensive update of the entire document. This article summarizes and makes an excerpt of the new recommendations from this interim update.
4.Inhibition of Angiogenesis by Sanguisorbae Radix and Sophorae Flos in Ulcerative Colitis Mice by Regulating PI3K/Akt Signaling Pathway
Yuzhuo WEI ; Li LIU ; Shu BU ; Yongqi WANG ; Zhiwei MIAO ; Yi XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):40-50
ObjectiveTo explore the potential mechanism of action of the combination of Sanguisorbae Radix-Sophorae Flos (DH) in the treatment of ulcerative colitis (UC) using network pharmacology methods and molecular docking technology. MethodsNetwork pharmacology analysis was utilized to predict the potential targets of DH for the treatment of UC. The therapeutic effects were experimentally validated by inducing a UC model in mice with 3% dextran sulfate sodium (DSS). The experimental groups were the normal group, the model group, the salazosulfapyridine group (100 mg·kg-1), and the low, medium, and high dose groups of DH (1.2, 2.4, and 4.8 g·kg-1). The efficacy of the treatment was assessed through the general condition of the mice, histopathological examination, and the expression levels of inflammatory markers in the colon. The effect of DH on angiogenesis was explored by messenger RNA (mRNA) detection of colonic angiogenesis-related mediators, vascular endothelial growth factor (VEGF) immunohistochemistry, microvessel density (MVD) detection, and transmission electron microscopy. The phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) signaling pathway proteins were quantitatively analyzed through Western blot to assess whether the suppression of pathological angiogenesis by DH is associated with this pathway. ResultsNetwork pharmacological analysis yielded 112 potential core therapeutic targets for the treatment of UC with DH, of which the core targets were tumor protein 53 (TP53), JUN, interleukin (IL)-6, Akt1, and tumor necrosis factor (TNF). Compared with the normal group, mice in the model group showed significant weight loss, colon shortening, and high DAI score, increased expression of inflammatory factors IL-6, IL-1β, and TNF-α, as well as increased mRNA expression levels of angiogenesis-related mediators VEGF, vascular cell adhesion molecule 1 (VCAM1), angiotensin 1 (Ang1), matrix metalloproteinase (MMP)-1, MMP-2, and MMP-9. The positive expression of CD31 and VEGF in colonic tissue increased, and the protein expression of the PI3K/Akt pathway was increased (P<0.05). The endothelial cells of the colonic mucosa and the colonic vasculature were severely damaged. Compared with the model group, mice in the DH groups had significantly reduced weight loss and colon shortening, lower DAI scores, and a significant decrease in mRNA expression of inflammatory factors and angiogenesis-related mediators. In addition, there was decreased positive expression of CD31 and VEGF in colonic tissue and decreased protein expression of the PI3K/Akt pathway (P<0.05). ConclusionNetwork pharmacology, molecular docking, and experimental validation are applied to explore the mechanism of action of DH in the treatment of UC, and it is found that DH is able to improve the symptoms of colitis and inhibit the pathological angiogenesis in UC mice. Its action might be related to affecting the PI3K/Akt pathway.
5.Effect and Mechanism of Angelicae Sinensis Radix-Polygonati Rhizoma Herb Pair in Treatment of Simple Obesity
Wenjing LI ; Zhongyu WANG ; Yongxin HUANG ; Jingjing XU ; Ying DING ; You WU ; Zhiwei QI ; Ruifeng YANG ; Xiaotong YANG ; Lili WU ; Lingling QIN ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):70-79
ObjectiveTo preliminarily explore the active components and target pathways of Angelicae Sinensis Radix-Polygonati Rhizoma (ASR-PR) herb pair in the treatment of simple obesity through network pharmacology and molecular docking, and to verify and investigate its mechanism of action via animal experiments. MethodsThe chemical constituents and targets of ASR and PR were predicted using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Targets related to simple obesity were identified by retrieving the GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), and DisGeNET databases. The intersection of drug and disease targets was used to construct an active component-target network using Cytoscape software. This network was imported into the STRING database to construct a protein-protein interaction (PPI) network, and topological analysis was conducted to identify core genes. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and mapping were performed using the DAVID database and the Microbioinformatics platform. AutoDock 1.5.7 software was used to perform molecular docking between the top five active components and core targets. An animal model of simple obesity was established by feeding C57BL/6J mice a high-fat diet. The mice were administered ASR (2.06 g·kg-1), PR (2.06 g·kg-1), or ASR-PR (4.11 g·kg-1) for 10 weeks, while the model group received an equal volume of purified water by gavage. After the administration period, the mice were sacrificed to measure body fat weight and serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Hematoxylin-eosin (HE) staining was used to observe histopathological sections of liver and adipose tissue. Serum levels of leptin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression levels of epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3) in liver tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsNetwork pharmacology and molecular docking results indicated that the treatment of simple obesity by ASR-PR may involve the regulation of protein expression of core targets EGFR and STAT3 by its main components MOL009760 (Siberian glycoside A_qt), MOL003889 (methyl protodioscin_qt), MOL009766 (resveratrol), MOL006331 (4′,5-dihydroxyflavone), and MOL004941 (baicalin), thereby modulating the PI3K/Akt and JAK/STAT signaling pathways. The animal experiment results showed that compared with the normal group, the model group had significantly increased body weight, body fat weight, and serum levels of TG, TC, TNF-α, IL-6, and leptin (P<0.01). EGFR mRNA expression was significantly elevated (P<0.05), while STAT3 mRNA expression was significantly decreased (P<0.01). Histological analysis revealed disordered hepatic architecture in the model group, with pronounced lipid vacuoles, cytoplasmic loosening, lipid accumulation, and steatosis. Adipocytes in white adipose tissue (WAT) and brown adipose tissue (BAT) of the model group exhibited markedly increased diameters, reduced cell counts per unit area, and irregular morphology. Compared with the model group, the ASR-PR group significantly reduced body weight, body fat weight, serum TC, IL-6, TNF-α, leptin levels, and EGFR mRNA expression (P<0.01). TG levels were also significantly decreased (P<0.05), while STAT3 mRNA expression was significantly increased (P<0.01). Histopathological improvements included reduced size and number of hepatic lipid vacuoles and restoration of liver cell morphology toward that of the normal group. The diameter of adipocytes significantly decreased, and the number of adipocytes per unit area increased. ConclusionASR-PR may regulate the expression of key target proteins such as EGFR and STAT3 via its core active components, modulate the PI3K/Akt and JAK/STAT signaling pathways, repair damaged liver and adipose tissues, and thereby alleviate the progression of obesity in mice.
6.Inhibition of Angiogenesis by Sanguisorbae Radix and Sophorae Flos in Ulcerative Colitis Mice by Regulating PI3K/Akt Signaling Pathway
Yuzhuo WEI ; Li LIU ; Shu BU ; Yongqi WANG ; Zhiwei MIAO ; Yi XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):40-50
ObjectiveTo explore the potential mechanism of action of the combination of Sanguisorbae Radix-Sophorae Flos (DH) in the treatment of ulcerative colitis (UC) using network pharmacology methods and molecular docking technology. MethodsNetwork pharmacology analysis was utilized to predict the potential targets of DH for the treatment of UC. The therapeutic effects were experimentally validated by inducing a UC model in mice with 3% dextran sulfate sodium (DSS). The experimental groups were the normal group, the model group, the salazosulfapyridine group (100 mg·kg-1), and the low, medium, and high dose groups of DH (1.2, 2.4, and 4.8 g·kg-1). The efficacy of the treatment was assessed through the general condition of the mice, histopathological examination, and the expression levels of inflammatory markers in the colon. The effect of DH on angiogenesis was explored by messenger RNA (mRNA) detection of colonic angiogenesis-related mediators, vascular endothelial growth factor (VEGF) immunohistochemistry, microvessel density (MVD) detection, and transmission electron microscopy. The phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) signaling pathway proteins were quantitatively analyzed through Western blot to assess whether the suppression of pathological angiogenesis by DH is associated with this pathway. ResultsNetwork pharmacological analysis yielded 112 potential core therapeutic targets for the treatment of UC with DH, of which the core targets were tumor protein 53 (TP53), JUN, interleukin (IL)-6, Akt1, and tumor necrosis factor (TNF). Compared with the normal group, mice in the model group showed significant weight loss, colon shortening, and high DAI score, increased expression of inflammatory factors IL-6, IL-1β, and TNF-α, as well as increased mRNA expression levels of angiogenesis-related mediators VEGF, vascular cell adhesion molecule 1 (VCAM1), angiotensin 1 (Ang1), matrix metalloproteinase (MMP)-1, MMP-2, and MMP-9. The positive expression of CD31 and VEGF in colonic tissue increased, and the protein expression of the PI3K/Akt pathway was increased (P<0.05). The endothelial cells of the colonic mucosa and the colonic vasculature were severely damaged. Compared with the model group, mice in the DH groups had significantly reduced weight loss and colon shortening, lower DAI scores, and a significant decrease in mRNA expression of inflammatory factors and angiogenesis-related mediators. In addition, there was decreased positive expression of CD31 and VEGF in colonic tissue and decreased protein expression of the PI3K/Akt pathway (P<0.05). ConclusionNetwork pharmacology, molecular docking, and experimental validation are applied to explore the mechanism of action of DH in the treatment of UC, and it is found that DH is able to improve the symptoms of colitis and inhibit the pathological angiogenesis in UC mice. Its action might be related to affecting the PI3K/Akt pathway.
7.Effect and Mechanism of Angelicae Sinensis Radix-Polygonati Rhizoma Herb Pair in Treatment of Simple Obesity
Wenjing LI ; Zhongyu WANG ; Yongxin HUANG ; Jingjing XU ; Ying DING ; You WU ; Zhiwei QI ; Ruifeng YANG ; Xiaotong YANG ; Lili WU ; Lingling QIN ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):70-79
ObjectiveTo preliminarily explore the active components and target pathways of Angelicae Sinensis Radix-Polygonati Rhizoma (ASR-PR) herb pair in the treatment of simple obesity through network pharmacology and molecular docking, and to verify and investigate its mechanism of action via animal experiments. MethodsThe chemical constituents and targets of ASR and PR were predicted using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Targets related to simple obesity were identified by retrieving the GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), and DisGeNET databases. The intersection of drug and disease targets was used to construct an active component-target network using Cytoscape software. This network was imported into the STRING database to construct a protein-protein interaction (PPI) network, and topological analysis was conducted to identify core genes. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and mapping were performed using the DAVID database and the Microbioinformatics platform. AutoDock 1.5.7 software was used to perform molecular docking between the top five active components and core targets. An animal model of simple obesity was established by feeding C57BL/6J mice a high-fat diet. The mice were administered ASR (2.06 g·kg-1), PR (2.06 g·kg-1), or ASR-PR (4.11 g·kg-1) for 10 weeks, while the model group received an equal volume of purified water by gavage. After the administration period, the mice were sacrificed to measure body fat weight and serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Hematoxylin-eosin (HE) staining was used to observe histopathological sections of liver and adipose tissue. Serum levels of leptin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression levels of epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3) in liver tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsNetwork pharmacology and molecular docking results indicated that the treatment of simple obesity by ASR-PR may involve the regulation of protein expression of core targets EGFR and STAT3 by its main components MOL009760 (Siberian glycoside A_qt), MOL003889 (methyl protodioscin_qt), MOL009766 (resveratrol), MOL006331 (4′,5-dihydroxyflavone), and MOL004941 (baicalin), thereby modulating the PI3K/Akt and JAK/STAT signaling pathways. The animal experiment results showed that compared with the normal group, the model group had significantly increased body weight, body fat weight, and serum levels of TG, TC, TNF-α, IL-6, and leptin (P<0.01). EGFR mRNA expression was significantly elevated (P<0.05), while STAT3 mRNA expression was significantly decreased (P<0.01). Histological analysis revealed disordered hepatic architecture in the model group, with pronounced lipid vacuoles, cytoplasmic loosening, lipid accumulation, and steatosis. Adipocytes in white adipose tissue (WAT) and brown adipose tissue (BAT) of the model group exhibited markedly increased diameters, reduced cell counts per unit area, and irregular morphology. Compared with the model group, the ASR-PR group significantly reduced body weight, body fat weight, serum TC, IL-6, TNF-α, leptin levels, and EGFR mRNA expression (P<0.01). TG levels were also significantly decreased (P<0.05), while STAT3 mRNA expression was significantly increased (P<0.01). Histopathological improvements included reduced size and number of hepatic lipid vacuoles and restoration of liver cell morphology toward that of the normal group. The diameter of adipocytes significantly decreased, and the number of adipocytes per unit area increased. ConclusionASR-PR may regulate the expression of key target proteins such as EGFR and STAT3 via its core active components, modulate the PI3K/Akt and JAK/STAT signaling pathways, repair damaged liver and adipose tissues, and thereby alleviate the progression of obesity in mice.
8.Causal relationship between circulating inflammatory cytokines and bone mineral density based on two-sample Mendelian randomization
Shuai CHEN ; Jie JIN ; Huawei HAN ; Ningsheng TIAN ; Zhiwei LI
Chinese Journal of Tissue Engineering Research 2025;29(8):1556-1564
BACKGROUND:Many recent studies have shown a close relationship between inflammatory cytokines and osteoporosis and bone mineral density(BMD).However,the causal relationship between inflammatory cytokines and BMD has not been fully revealed. OBJECTIVE:To explore the potential causal relationship between inflammatory cytokines and BMD using a two-sample Mendelian randomization analysis. METHODS:The single nucleotide polymorphisms associated with 41 circulating inflammatory cytokines were selected from the open database of genome-wide association studies(GWAS)as instrumental variables.The GWAS data about BMD were from the Genetic Factors for Osteoporosis Consortium,involving a total of 32 735 individuals of European ancestry.Inverse variance weighting was used as the primary analysis to evaluate the causal effect.Weighted median,MR Egger regression,simple mode,and weighted mode methods were used to supplement the explanation.We used the MR-Egger intercept and MR-PRESSO method to conduct a pleiotropy test,the Cochran's Q test was used to determine whether there was heterogeneity in the results,and the leave-one-out method was used to evaluate the stability of the results.In addition,to more accurately assess the causality,the Bonferroni-corrected test was used to identify inflammatory cytokines that have a strong causal relationship with BMD. RESULTS AND CONCLUSION:(1)According to the results of the inverse variance weighting method,we found a positive causal relationship between interleukin-8 and lumbar spine BMD[β=0.075,95%confidence interval(CI):0.033-0.117,P=0.000 5),while a negative causal relationship between interleukin-17 and lumbar spine BMD(β=-0.083,95%CI:-0.152 to-0.014,P=0.018).There might be a negative causal relationship between tumor necrosis factor b and femoral neck BMD(β=-0.053,95%CI:-0.088 to-0.018,P=0.003),while a positive causal relationship between basic fibroblast growth factor and femoral neck BMD(β=0.085,95%CI:0.016-0.154,P=0.015).There might be a negative causal relationship between macrophage inflammatory protein-1a and total body BMD(β=-0.056,95%CI:-0.105 to-0.007,P=0.025).There was a negative causal relationship between interleukin-5(β=-0.019,95%CI:-0.031 to-0.006,P=0.004),stromal cell-derived factor-1a(β=-0.022,95%CI:-0.038 to-0.005,P=0.010),hepatocyte growth factor(β=-0.021,95%CI:-0.041 to-0.002,P=0.030),interleukin-4(β=-0.016,95%CI:-0.032 to-0.001,P=0.034)and heel BMD,while a positive causal relationship between nerve growth factor(β=0.019,95%CI:0.002-0.036,P=0.033),granulocyte colony-stimulating factor(β=0.011,95%CI:0.000-0.022,P=0.050),and heel BMD.Meanwhile,after the Bonferroni-corrected test,there was a strong positive causal effect between interleukin-8 and lumbar spine BMD(P=0.000 5).And consistent directional effects for all analyses were observed in MR Egger,weighted median,simple mode,and weighted mode methods.(2)Sensitivity analyses revealed no heterogeneity,pleiotropy,or outliers for the causal effect of circulating inflammatory cytokines on BMD.
9.Association between polymorphisms in the glucose metabolism and lipid regulation genes with metabolic abnormalities in childhood obesity
Chinese Journal of School Health 2025;46(6):888-893
Objective:
To explore the association between CDKAL1 rs35261542, FAIM2 rs 3205718, and VGLL4 rs 2574704 polymorphisms with childhood obesity and related metabolic phenotypes to provide evidence for personalized prevention and management strategies.
Methods:
Based on the 2023 Long term Nutritional Health Effects of Early Childhood Nutrition Package Intervention project, the study enrolled 1 078 children aged 5-7 years from four counties in Henan (Songxian and Ruyang countries) and Guizhou (Guiding and Fuquan countries) provinces. Using BMI Z scores, 87 overweight and obese(OVOB) children were selected and matched by sex, age, and BMI Z score with 117 normal weight controls. Participants were further stratified into four metabolic phenotype groups: metabolically healthy normal weight (MHNW, n =51), metabolically unhealthy normal weight (MUNW, n =66), metabolically healthy obesity (MHO, n =31) and metabolically unhealthy obesity (MUO, n =56) based on four conventional cardiometabolic risk factor (CR) criteria. Data were collected through questionnaires, anthropometric measurements, serum biochemical tests, and KASP genotyping. The distribution of three genetic polymorphisms ( CDKAL1 rs35261542, FAIM2 rs3205718, VGLL4 rs 2574704) across metabolic subgroups was analyzed. Multivariate Logistic regression models assessed associations between these polymorphisms and obesity/metabolic phenotypes.
Results:
Multivariate Logistic regression analysis showed that Homozygous mutant AA genotype of CDKAL1 rs 35261542 was positively associated with OVOB( OR =3.63), MHO ( OR =11.04), MUO ( OR = 4.88 ) ( P <0.05). Homozygous TT genotype of FAIM2 rs 3205718 increased OVOB risk ( OR =4.44, P <0.05) but showed no association with metabolic phenotypes ( P >0.05). Homozygous mutant TT of VGLL4 rs 2574704 reduced the risks of MHO and MUO ( OR = 0.30, 0.24, P <0.05). Cumulative genetic effects analysis demonstrated carriers of 1 or 2 risk genotypes of rs 35261542 and rs 3205718 had progressively higher OVOB risk ( OR =2.53, 20.79), and the combination of rs 35261542 and rs 2574704 increased risks for both MHO ( OR =8.50) and MUO ( OR =5.00) ( P <0.05).
Conclusions
The AA genotype of rs 35261542 ( CDKAL1 ) positively correlates with childhood obesity and metabolic abnormalities. The TT genotype of rs 3205718 ( FAIM 2) increases obesity risk but not metabolic phenotypes. The TT genotype of rs 2574704 ( VGLL 4) shows protective effects against metabolic dysfunction. Risk genotypes exhibit dosedependent cumulative effects on obesity and metabolic outcomes.
10.Biological function of tRNA-derived small RNA and its expression and clinical significance in liver diseases
Yinli LI ; Yan XU ; Zhiwei GUAN ; Lu MENG ; Yitong QU ; Jianli QIU
Journal of Clinical Hepatology 2025;41(6):1227-1234
Liver diseases cannot be easily detected in the early stage, and although invasive diagnostic methods, such as liver biopsy, are relatively accurate, they tend to have a low degree of acceptance, which greatly limits the improvement in diagnosis and treatment techniques for liver diseases. Therefore, it is of great importance to search for new biomarkers and therapeutic targets. As an emerging biomarker for liquid biopsy, tRNA-derived small RNA (tsRNA) is abnormally expressed in various liver diseases including viral hepatitis, fatty liver disease, liver injury, and liver cancer, and it can affect the development and progression of liver diseases by regulating the biological functions such as gene expression, epigenetic regulation, and protein translation. This article reviews the origin, classification, and biological function of tsRNA, as well as the research advances in tsRNA as biomarkers and potential therapeutic targets for liver diseases, so as to provide ideas for the early diagnosis and treatment of liver diseases.


Result Analysis
Print
Save
E-mail