1.Hei Xiaoyaosan Improves Learning and Memory Abilities in Alzheimer's Disease Rats by Regulating Cell Apoptosis
Huping WANG ; Jiao YANG ; Yiqin CHEN ; Zhipeng MENG ; Yujie LYU ; Yunyun HU ; Wenli PEI ; Yumei HAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):108-115
ObjectiveTo explore the mechanism of Hei Xiaoyaosan in improving the cognitive function in Alzheimer's disease (AD) from cell apoptosis mediated by the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/nuclear factor kappa B (NF-κB) signaling pathway. MethodsFour-month-old SD male rats were randomly assigned into a blank group, a sham group, a model group, a donepezil hydrochloride (0.45 mg·kg-1) group, and high-, medium-, and low-dose (15.30, 7.65, and 3.82 g·kg-1, respectively) Hei Xiaoyaosan groups, with 10 rats in each group. The sham group received bilateral hippocampal injection of 1 μL normal saline, while the other groups received bilateral hippocampal injection of 1 μL beta-amyloid 1-42 (Aβ1-42) solution for the modeling of AD. Rats were administrated with corresponding agents once a day for 42 consecutive days. The Morris water maze test was carried out to assess the learning and memory abilities of rats. Hematoxylin-eosin staining was employed to observe pathological changes in the hippocampus of rats. Enzyme-linked immunosorbent assay was employed to measure the levels of cysteinyl aspartate-specific proteinase-3 (Caspase-3), B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax). Western blot was employed to determine the protein levels of PI3K, Akt, and NF-κB. A cell model of AD was established by co-culturing Aβ1-42 and PC12 cells in vitro. Cell viability and apoptosis were detected by the cell-counting kit 8 (CCK-8) assay and flow cytometry (FC), respectively. ResultsAnimal experiments showed that compared with the blank group, the model group had a prolonged escape latency (P<0.01), a reduced number of crossing platforms (P<0.01), disarrangement and a reduced number of hippocampal neurons, up-regulated expression of Bax and Caspase-3, down-regulated expression of Bcl-2 (P<0.01), decreased p-PI3K/PI3K and p-Akt/Akt levels, and an increased p-NF-κB/NF-κB level (P<0.01). Compared with the model group, donepezil hydrochloride and high- and medium-dose Hei Xiaoyaosan shortened the escape latency and increased the number of crossing platforms (P<0.05, P<0.01), improved the arrangement and increased the number of hippocampal neurons, down-regulated the expression levels of Bax and Caspase-3, up-reguated the expression level of Bcl-2 (P<0.05, P<0.01), increased the p-PI3K/PI3K and p-Akt/Akt levels (P<0.05, P<0.01), and reduced the p-NF-κB/NF-κB level (P<0.05, P<0.01). Cell experiments showed that compared with the blank group, the model group exhibited an increased apoptosis rate (P<0.01). Compared with the model group, the serum containing Hei Xiaoyaosan at various doses improved the cell viability (P<0.01), and the serum containing Hei Xiaoyaosan at the high dose decreased the cell apoptosis (P<0.01). ConclusionHei Xiaoyaosan may improve the learning and memory abilities of AD model rats by regulating cell apoptosis, while increasing the vitality and reducing the apoptosis rate of AD model cells via the PI3K/Akt/NF-κB signaling pathway.
2.Effect of Hei Xiaoyaosan on Neuroinflammation and NLRP3/Caspase-1/GSDMD Signaling Pathway in APP/PS1 Mice
Jun ZHOU ; Mingcheng LI ; Yujie LYU ; Zhipeng MENG ; Yunyun HU ; Huping WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):124-133
ObjectiveTo observe the effects of Hei Xiaoyaosan on the learning and memory abilities of Alzheimer's disease model mice (APP/PS1 mice), and to explore its mechanism through the inflammatory cascade mediated by nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3)/cysteine aspartate-specific protease (Caspase-1)/gasdermin D (GSDMD) signaling pathway. MethodsSPF-grade 4-month-old APP/PS1 mice were randomly divided into the model group, MCC950 group, and Hei Xiaoyaosan high-, medium-, and low-dose groups. C57BL/6J mice were used as the blank group. After 7 days of adaptive feeding, mice in each group were intervened. The Hei Xiaoyaosan high-, medium-, and low-dose groups were given corresponding doses by gavage (25.79, 12.90, 6.45 g·kg-1·d-1), the MCC950 group was intraperitoneally injected with 10 mg·kg-1·2 d-1, and the blank group received the same volume of physiological saline by gavage. After 90 days of intervention, the learning and memory abilities were assessed using the Y maze and Morris water maze tests. The structural changes of hippocampal neurons were observed by hematoxylin-eosin (HE) staining. The expression of amyloid precursor protein (APP) in the hippocampal CA3 region was detected by immunohistochemistry. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of interleukin (IL)-10, IL-18, and IL-1β in the hippocampus. Western blot was applied to detect the protein expression of NLRP3, Caspase-1, GSDMD, and GSDMD-N in the hippocampus. Immunofluorescence was used to detect the co-localization of GSDMD-N and ionized calcium-binding adapter molecule-1 (Iba-1) in the hippocampus. Results① In the Y maze test, compared with the blank group, the spontaneous alternation rate of the model group was significantly reduced (P<0.01). Compared with the model group, the spontaneous alternation rate in the Hei Xiaoyaosan high- and low-dose groups was significantly increased (P<0.01). ② In the Morris water maze test, during the 1-4 days of the location navigation test, the escape latency time of mice decreased with the extension of training time. On day 4, compared with the blank group, the model group showed a significantly increased escape latency (P<0.05). Compared with the model group, the MCC950 group and the Hei Xiaoyaosan low-dose group showed significantly reduced escape latency (P<0.05). In the spatial exploration experiment, compared with the blank group, the number of platform crossings in the model group was significantly reduced (P<0.01). Compared with the model group, the Hei Xiaoyaosan low-dose group showed significantly increased platform crossings (P<0.05). ③ HE staining showed that, compared with the blank group, the hippocampal CA3 cells of the model group were damaged, arranged loosely and irregularly, swollen, with unclear boundaries, and the nuclei were pyknotic and deeply stained. MCC950 and all doses of Hei Xiaoyaosan improved the hippocampal CA3 cell damage in APP/PS1 mice to varying degrees. ④ Immunohistochemical results indicated that, compared with the blank group, the expression of APP in the hippocampal CA3 region was significantly increased in the model group (P<0.01). MCC950 and all doses of Hei Xiaoyaosan could reduce the expression of APP in the hippocampal CA3 region of APP/PS1 mice (P<0.01). ⑤ ELISA results showed that the levels of IL-18 and IL-1β in the hippocampus of mice in the model group were significantly increased, and IL-10 levels were significantly reduced (P<0.01). Compared with the model group, the IL-18 levels in the MCC950 group and the Hei Xiaoyaosan medium- and low-dose groups were significantly reduced (P<0.01). IL-1β levels in the hippocampus of the MCC950 group and Hei Xiaoyaosan high-, medium-, and low-dose groups were significantly decreased (P<0.01). The IL-10 levels in the hippocampus of the MCC950 group and the Hei Xiaoyaosan medium- and low-dose groups were increased (P<0.05, P<0.01). ⑥ Western blot results showed that compared with the blank group, the protein levels of NLRP3, Caspase-1, GSDMD, and GSDMD-N in the hippocampus of the model group were significantly elevated (P<0.01). Compared with the model group, the content of NLRP3 and Caspase-1 in the hippocampus of the treated groups was decreased (P<0.05, P<0.01). The content of GSDMD in the hippocampus of the Hei Xiaoyaosan high-, medium-, and low-dose groups was reduced (P<0.05, P<0.01), and the content of GSDMD-N in the hippocampus of the Hei Xiaoyaosan medium- and low-dose groups was decreased (P<0.05, P<0.01). ⑦ Immunofluorescence results showed that, compared with the blank group, the co-expression of GSDMD-N and Iba-1 in the hippocampus of the model group was significantly increased (P<0.01). Compared with the model group, the co-expression of GSDMD-N and Iba-1 in the treated groups was significantly reduced (P<0.01). ConclusionHei Xiaoyaosan may regulate the NLRP3/Caspase-1/GSDMD signaling pathway to affect the release of inflammatory factors, alleviate neuroinflammation,improve hippocampal histopathological changes,and improve learning and memory deficits,thus providing potential therapeutic benefits for Alzheimer's disease.
3.Application Value of an AI-based Imaging Feature Parameter Model for Predicting the Malignancy of Part-solid Pulmonary Nodule.
Mingzhi LIN ; Yiming HUI ; Bin LI ; Peilin ZHAO ; Zhizhong ZHENG ; Zhuowen YANG ; Zhipeng SU ; Yuqi MENG ; Tieniu SONG
Chinese Journal of Lung Cancer 2025;28(4):281-290
BACKGROUND:
Lung cancer is one of the most common malignant tumors worldwide and a major cause of cancer-related deaths. Early-stage lung cancer is often manifested as pulmonary nodules, and accurate assessment of the malignancy risk is crucial for prolonging survival and avoiding overtreatment. This study aims to construct a model based on image feature parameters automatically extracted by artificial intelligence (AI) to evaluate its effectiveness in predicting the malignancy of part-solid nodule (PSN).
METHODS:
This retrospective study analyzed 229 PSN from 222 patients who underwent pulmonary nodule resection at Lanzhou University Second Hospital between October 2020 and February 2025. According to pathological results, 45 cases of benign lesions and precursor glandular lesion were categorized into the non-malignant group, and 184 cases of pulmonary malignancies were categorized into the malignant group. All patients underwent preoperative chest computed tomography (CT), and AI software was used to extract imaging feature parameters. Univariate analysis was used to screen significant variables; variance inflation factor (VIF) was calculated to exclude highly collinear variables, and LASSO regression was further applied to identify key features. Multivariate Logistic regression was used to determine independent risk factors. Based on the selected variables, five models were constructed: Logistic regression, random forest, XGBoost, LightGBM, and support vector machine (SVM). Receiver operating characteristic (ROC) curves were used to assess the performance of the models.
RESULTS:
The independent risk factors for the malignancy of PSN include roughness (ngtdm), dependence variance (gldm), and short run low gray-level emphasis (glrlm). Logistic regression achieved area under the curves ( AUCs) of 0.86 and 0.89 in the training and testing sets, respectively, showing good performance. XGBoost had AUCs of 0.78 and 0.77, respectively, demonstrating relatively balanced performance, but with lower accuracy. SVM showed an AUC of 0.93 in the training set, which decreased to 0.80 in the testing set, indicating overfitting. LightGBM performed excellently in the training set with an AUC of 0.94, but its performance declined in the testing set, with an AUC of 0.88. In contrast, random forest demonstrated stable performance in both the training and testing sets, with AUCs of 0.89 and 0.91, respectively, exhibiting high stability and excellent generalizability.
CONCLUSIONS
The random forest model constructed based on independent risk factors demonstrated the best performance in predicting the malignancy of PSN and could provide effective auxiliary predictions for clinicians, supporting individualized treatment decisions.
.
Humans
;
Male
;
Female
;
Lung Neoplasms/pathology*
;
Middle Aged
;
Retrospective Studies
;
Artificial Intelligence
;
Aged
;
Tomography, X-Ray Computed
;
Adult
;
Solitary Pulmonary Nodule/diagnostic imaging*
;
ROC Curve
4.Initial exploration of non-invasive diagnosis of eosinophilic chronic rhinosinusitis with nasal polyps via nasal brush sampling.
Zhipeng CHEN ; Jian GUO ; Wenyi CHEN ; Yuan MENG ; Daxiao LI ; Junhui ZHOU ; Zhongjue WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(7):617-623
Objective:To identify the key epithelial cell characteristics that can accurately diagnose eosinophilic chronic sinusitis with nasal polyps(ECRSwNP) through nasal brush sampling and comparing with the pathological results of nasal polyp tissue sections. Methods:Ninety-one patients underwent surgery in the Ophthalmology and ENT Department of the Second People's Hospital of Longgang District, Shenzhen, from January 2022 to July 2024 were selected. The cohort comprised 58 males and 33 females(mean age: 41.4 years; range: 12.0-71.0). The clinical characteristics of the patients, including gender, age, disease duration, smoking and drinking history, asthma history, subjective symptoms, sinus CT, and nasal endoscopy scores, were recorded. Nasal brush sampling of nasal polyps and inferior turbinate mucosa was performed before surgery to obtain cytological specimens, and nasal polyp tissues were collected during surgery. The demographic and clinical characteristics of patients with eosinophilic and non-eosinophilic nasal polyps were compared, as well as the relationship between nasal brush cytology of nasal polyps and inferior turbinate and nasal polyp histopathology. Statistical analysis was performed using SPSS 23.0 software. Results:Among the 91 patients, no significant differences were observed between ECRSwNP and NECRSwNP patients in terms of age, gender, smoking status, alcohol consumption, and disease duration. The nasal brush cell population in ECRSwNP patients was more likely to contain eosinophils(P<0.001) and less likely to contain lymphocytes and plasma cells(P<0.001). Additionally, the ciliated cells in ECRSwNP patients exhibited larger widths(P=0.036), shorter cilium lengths(P<0.001), and more disordered arrangements(P<0.001) compared to NECRSwNP patients. In nasal brush cells from the inferior turbinate, ECRSwNP patients also showed shorter cilium lengths(P<0.001) and shorter cilia(P=0.024) compared to NECRSwNP patients. Conclusion:There are significant differences in obtaining epithelial cytological information from nasal polyps or inferior turbinates through nasal brush sampling between ECRSwNP and NECRSwNP patients.
Humans
;
Male
;
Female
;
Middle Aged
;
Adult
;
Nasal Polyps/complications*
;
Sinusitis/complications*
;
Aged
;
Chronic Disease
;
Adolescent
;
Nasal Mucosa/pathology*
;
Young Adult
;
Rhinitis/complications*
;
Eosinophilia/pathology*
;
Child
;
Eosinophils/pathology*
;
Rhinosinusitis
5.Effect and Mechanism of Action of Epimedii Folium Polysaccharides on Mice with Exercise-induced Fatigue Based on p38 MAPK/NF-κB Signaling Pathway
Yue ZOU ; Min XIAO ; Yuhao MENG ; Kunyang TANG ; Xiaocui JIANG ; Zhipeng FANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(10):20-28
ObjectiveTo study the effects of Epimedii Folium polysaccharides on mice with exercise-induced fatigue and explore its possible mechanism of action. MethodICR male mice screened by swimming training were randomly divided into a control group, model group, vitamin C group, and low, medium, and high dose groups of Epimedii Folium polysaccharides, with eight mice in each group. The exercise-induced fatigue model was established by weight-bearing swimming training in each group except for the control group. After two weeks of weight-bearing swimming, the Epimedii Folium polysaccharide groups were given 100, 200, 400 mg∙kg-1 of Epimedii Folium polysaccharides by gavage, and the vitamin C group was given 200 mg∙kg-1 of vitamin C by gavage. The control group and the model group were given equal amounts of saline for 14 d. At the end of the experimental period, the body mass of the mice in each group and the time of last swimming due to exhaustion were recorded. Serum urea nitrogen (BUN), lactic acid (LA), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidation (GSH-Px), myoglycogen (MG) in skeletal muscle, hepatic glycogen (HG) in the liver were detected by kits. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in muscle tissue. Western blot was used to detect the protein expression of p38 mitogen-activated protein kinase (p38 MAPK), phosphorylation (p)-p38 MAPK, extracellular signal-regulated kinase1/2 (ERK1/2), nuclear factor-κB (NF-κB), p-NF-κB, interleukin-1β (IL-1β), and interleukin-6 (IL-6) in muscle tissue. The immunofluorescence (IF) method was used to detect the expression of tumor necrosis factor-α (TNF-α) in skeletal muscle tissue of mice in each group. ResultCompared with the control group, the body mass of mice in the model group decreased, and the time of last swimming due to exhaustion decreased (P<0.01). In addition, there were significantly higher serum levels of the fatigue metabolites LA, LDH, BUN, and lipid peroxidation product MDA (P<0.01) and decreased levels of MG, HG, SOD, and GSH-Px (P<0.01). The protein expressions of p-p38 MAPK, ERK1/2, p-NF-κB, IL-1β, IL-6, and TNF-α in skeletal muscle tissue were significantly higher than those of the control group (P<0.01). Compared with the model group, the body mass and time of last swimming due to exhaustion of the mice in the low, medium, and high dose groups of Epimedii Folium polysaccharides and the vitamin C group were increased (P<0.05, P<0.01), and the contents of LA, LDH, BUN, and MDA were significantly decreased (P<0.05, P<0.01). The levels of MG, HG, SOD, and GSH-Px increased (P<0.05, P<0.01), and the protein expression levels of p-p38 MAPK, ERK, p-NF-κB, IL-1β, IL-6, and TNF-α in skeletal muscle tissue decreased (P<0.05, P<0.01). ConclusionEpimedii Folium polysaccharides can play a role in alleviating exercise-induced fatigue by inhibiting the p38 MARK/NF-κB signaling pathway, thereby reducing the accumulation of metabolites, improving the activity of antioxidant enzymes, increasing the glycogen content of the body, and reducing inflammation in skeletal muscle.
6.Hei Xiaoyaosan Regulates Fas/FasL/Caspase-8/Caspase-3 Signaling Pathway to Inhibit Neuronal Apoptosis in AD Rats
Huping WANG ; Yiqin CHEN ; Jiao YANG ; Yunyun HU ; Yujie LYU ; Zhipeng MENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(17):18-26
ObjectiveTo explore the effect and mechanism of Hei Xiaoyaosan in regulating the tumor necrosis factor receptor superfamily member 6 (Fas)/Fas ligand (FasL)/cysteine protease-8 (Caspase-8)/cysteine protease-3 (Caspase-3) signaling pathway to intervene in neuronal apoptosis and prevent Alzheimer's disease (AD). MethodNinety SPF-grade SD male rats of 4 months old were selected and randomly grouped as follows: 10 rats in the blank group, 10 rats in the sham group (bilateral hippocampus injected with 1 μL normal saline), and 70 rats in the modeling group [bilater hippocampus injected with 1 μL amyloid-beta protein 1-42 (Aβ1-42) solution for the modeling of AD]. Fifty successfully modeled rats were selected and randomly assigned into model, donepezil hydrochloride (0.45 mg·kg-1), and high-, medium-, and low-dose (15.30, 7.65, 3.82 g·kg-1) Hei Xiaoyaosan groups. Rats were administrated with corresponding agents by gavage once a day for 42 days. Terminal-deoxynucleoitidyl transferase-mediated nick end labeling (TUNEL) was employed to observe the apoptosis of neurons in the cortex and hippocampus, and immunohistochemistry (IHC) was used to detect the expression of B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax) in the hippocampus. Real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) was employed to determine the mRNA levels of Fas, FasL, and Fas-associated protein with death domain (Fadd). Western blot was used to determine the protein levels of Fas, FasL, Fadd, Caspase-3, cleved Caspase-3, Caspase-8, and cleved Caspase-8. ResultCompared with the blank group and sham group, the model group showed increased apoptosis rate in the cortex and hippocampus (P<0.01), elevated Bax level (P<0.01), lowered Bcl-2 level (P<0.01), up-regulated mRNA levels of Fas, FasL, and Fadd in the hippocampus (P<0.01), and up-regulated protein levels of Fas, FasL, Fadd, cleaved Caspase-3, and cleaved Caspase-8 (P<0.01). Compared with the model group, donepezil hydrochloride and Hei Xiaoyaosan at high and medium doses decreased the apoptosis rate in the cortex and hippocampus (P<0.05, P<0.01), lowered the Bax level (P<0.01), elevated the Bcl-2 level (P<0.01), and down-regulated the mRNA levels of Fas, FasL, and Fadd and the protein levels of Fas, FasL, Fadd, cleaved Caspase-3, and cleaved Caspase-8 (P<0.05, P<0.01) in the hippocampus. Low-dose Hei Xiaoyaosan decreased the apoptosis rate in the cortex and hippocampus (P<0.05, P<0.01), lowered the Bcl-2 level (P<0.01), and down-regulated the mRNA levels of FasL and Fadd (P<0.05) and the protein levels of Fas, FasL, Fadd, cleaved Caspase-3, and cleaved Caspase-8 (P<0.05) in the hippocampus. ConclusionHei Xiaoyaosan can protect neurons in the cortex and hippocampus of AD rats by inhibiting the apoptosis mediated by the Fas/FasL/Caspase-8/Caspase-3 signaling pathway.
7.Hei Xiaoyaosan Affects Synaptic Plasticity of Hippocampal Neurons in APP/PS1 Double Transgenic Mice of AD via cAMP/PKA/NMDAR Signaling Pathway
Yunyun HU ; Yujie LYU ; Zhipeng MENG ; Jiao YANG ; Yiqin CHEN ; Huping WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(17):27-34
ObjectiveTo explore the effect and mechanism of Hei Xiaoyaosan in modulating the synaptic plasticity in APP/PS1 mice by regulating the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/N-methyl-D-aspartate receptor (NMDAR) signaling pathway. MethodTwelve 4-month-old male C57BL/6J mice were selected as the blank control group, and 60 4-month-old male APP/PS1 double transgenic mice were randomized into model, KW-6002 (adenosine receptor antagonist, 3 mg·kg-1), and high-, medium-, and low-dose (22.10, 11.05, 5.53 g·kg-1, respectively) Hei Xiaoyaosan groups, with 12 mice in each group. Mice were administrated with corresponding drugs for 90 days. Transmission electron microscopy was employed to observe the synaptic ultrastructure of hippocampal neurons, and Golgi staining was used to observe the dendritic spine density of neurons in hippocampal CA1 region. Western blot was employed to measure the protein levels of cAMP, PKA, N-methyl-D-aspartate receptors 1, 2A, and 2B (NR1, NR2A, and NR2B, respectively), postsynaptic density protein 95 (PSD95), and synapsin 1 (SYN1). Real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) was performed to determine the mRNA levels of cAMP, PKA, and NR1. Enzyme-linked immunosorbent assay was employed to determine the content of interleukin-12 (IL-12) and interleukin-4 (IL-4) in the hippocampus. ResultCompared with the blank group, the model group showed blurred boundaries between presynaptic membrane and postsynaptic membrane in hippocampal CA1 region, reduced and scattered synaptic vesicles, and decreased density of postsynaptic membrane, and irregular, disarranged, and loosened dendritic spines of neurons in hippocampal CA1 region (P<0.01). In addition, the model group presented down-regulated protein levels of cAMP, PKA, NR1, NR2A, NR2B, PSD95, and SYN1 and mRNA levels of cAMP, PKA, and NR1, elevated IL-12 level, and lowered IL-4 level in the hippocampus (P<0.01). Compared with the model group, the drug intervention groups showed clear and intact boundaries between presynaptic membrane and postsynaptic membrane in hippocampal CA1 region, increased synaptic vesicles with dense arrangement, increased density of postsynaptic membrane, and improved morphology, arrangement, and density of neuronal dendritic spines (P<0.05, P<0.01). In addition, the drug interventions up-regulated the protein levels of cAMP, PKA, NR1, NR2A, NR2B, PSD95, and SYN1 (P<0.05,P<0.01) and mRNA levels of cAMP, PKA, and NR1 (P<0.01), lowered the IL-12 level (P<0.01), and elevated the IL-4 level (P<0.01) in the hippocampus. ConclusionHei Xiaoyaosan can improve the structure and morphology of hippocampal neurons in APP/PS1 mice by activating the cAMP/PKA/NMDAR signaling pathway and repairing synaptic plasticity.
8.Hei Xiaoyaosan Regulates RAS/RAF/MEK/ERK Signaling Pathway to Ameliorate Oxidative Stress in Rat Model of AD
Huping WANG ; Yujie LYU ; Yunyun HU ; Zhipeng MENG ; Jiao YANG ; Yiqin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(17):35-42
ObjectiveTo investigate the role and mechanism of Hei Xiaoyaosan in intervening in oxidative stress in the rat model of Alzheimer's disease (AD) via modulating the rat sarcoma (RAS)/rapidly accelerating fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway. MethodOne hundred 4-month-old SPF-grade Wistar male rats were randomly grouped as follows: 10 in the blank group, 10 in the sham group (bilateral hippocampus injected with 1 μL normal saline), and 80 in the modeling group [bilateral hippocampus injected with 1 μL amyloid beta protein 1-42 (Aβ1-42) solution for the modeling of AD]. Fifty rats qualified for modeling were selected and randomized into the model, donepezil hydrochloride (0.5 mg·kg-1), and high-, medium-, and low-dose (15.30, 7.65, 3.82 g·kg-1, respectively) Hei Xiaoyaosan groups. The rats were administrated with corresponding drugs by gavage once a day for 42 consecutive days. At the end of gavage, Morris water maze test was performed to examine the learning and memory abilities of the rats, and Nissl staining was used to observe the pathological changes of neurons in CA3 region of the hippocampus. The immunofluorescence assay was used to observe Aβ deposition and tau phosphorylation. Western blot was employed to determine the protein levels of RAS, RAF, phosphorylated (p)-RAF, MEK, p-MEK, ERK, and p-ERK in the hippocampal tissue. Biochemical methods were used to determine the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) in the hippocampal tissue. ResultCompared with the sham group, the model group showed prolonged escape latency (P<0.01), shortened swimming distance in the target quadrant (P<0.01), reduced and uneven stained Nissl bodies, enhanced fluorescence intensity of Aβ and p-tau (P<0.01), up-regulated protein levels of RAS, p-RAF, p-MEK, and p-ERK in the hippocampal tissue (P<0.01), increased ROS and MDA content (P<0.01), and decreased SOD activity (P<0.01) on day 5. Compared with the model group, donepezil hydrochloride and high-, medium-, and low-dose Hei Xiaoyaosan shortened the escape latency (P<0.01), increased the swimming distance in the target quadrant (P<0.01), improved the arrangement, morphology, and structures of neurons and the number and distribution of Nissl bodies, decreased the fluorescence intensity of Aβ and p-tau (P<0.01), up-regulated the protein levels of RAS, p-RAF, p-MEK, and p-ERK (P<0.05, P<0.01), decreased the ROS and MDA content (P<0.01), and increased the SOD activity (P<0.01) on day 5. ConclusionHei Xiaoyaosan may ameliorate oxidative stress, reduce Aβ and p-tau levels, and inhibit hippocampal neuronal damage by regulating the RAS/RAF/MEK/ERK signaling pathway, thus improving learning and memory abilities.
9.Hei Xiaoyaosan in Treating Alzheimer's Disease: A Review
Yujie LYU ; Yunyun HU ; Zhipeng MENG ; Yiqin CHEN ; Jiao YANG ; Huping WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(17):43-50
Alzheimer's disease (AD) is a neurodegenerative disease that predominantly affects the elderly. It belongs to the category of dementia in traditional Chinese medicine (TCM), with the onset and progression closely associated with the functions of the kidney, liver, and spleen. The classic TCM formula Hei Xiaoyaosan, which regulates the three Yin of liver, spleen, and kidney, shows broad prospects in treating neurodegenerative diseases. This article reviews the experimental studies reported in the past decade to summarize the mechanisms of Hei Xiaoyaosan and its active components in intervening in AD. Hei Xiaoyaosan can treat AD via multiple targets, levels, and aspects comprehensively. The clinical studies have demonstrated that Hei Xiaoyaosan alone or in combination with other therapies has a definite therapeutic effect on AD. Specifically, it can ameliorate the cognitive impairment, mitigate oxidative stress, and inhibit the overexpression of soluble apoptotic factors in AD patients. This review aims to provide a theoretical basis for the treatment of AD with Hei Xiaoyaosan and explore new research directions. Moreover, it gives new insights into the clinical application of Hei Xiaoyaosan and the development of products with both medicinal and edible values.
10.Effect of Danzhi Xiaoyaosan on Phosphorylation of Tau Protein in Rats with Alzheimer's Disease Based on PP2A and GSK-3β
Huping WANG ; Jun ZHOU ; Mingcheng LI ; Yujie LYU ; Zhipeng MENG ; Yunyun HU
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(6):63-70
ObjectiveTo investigate the effect of Danzhi Xiaoyaosan on the phosphorylation of tau protein and different sites of glycogen synthase kinase-3β (GSK-3β) and phosphoseryl/suanyl phosphate protein phosphatase 2A (PP2A) in the hippocampus of rats with Alzheimer's disease (AD) and its mechanism. MethodThe rat model of AD was established by injecting okadaic acid into the bilateral hippocampus of 90 male Wistar rats in SPF grades. The rats with successful modeling were selected and randomly divided into model group, aricept group (0.5 mg·kg-1), and Danzhi Xiaoyaosan high, medium, and low groups (17.55, 8.77, and 4.38 g·kg-1), and then gavaged for 42 d, once a day. Morris water maze was used to detect the learning and memory ability of rats, Nissl's staining was used to observe the morphological structure of neurons in the hippocampus, and Real-time polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression levels of tau protein, GSK-3β, and PP2A. Western blot was used to determine the protein expression levels of tau protein, GSK-3β, and PP2A. ResultAs compared with the control group, the learning and memory abilities of the rats in the model group were significantly decreased (P<0.01), and the hippocampal CA3 region cells had abnormal structure, disorderly arrangement, and decreased number. The expression levels of GSK-3β mRNA, GSK-3β, p-GSK-3β-Tyr216, p-PP2A, and p-tau were increased in the model group as compared with the control group (P<0.01), and those of p-GSK-3β-Ser9 and PP2A decreased significantly (P<0.01). As compared with the model group, the learning and memory ability of the Aricept group and the Danzhi Xiaoyaosan groups were improved (P<0.05, P<0.01), and the cell morphology and the number of hippocampal CA3 regions were better. The mRNA expression levels of PP2A and tau in the Aricept group were significantly up-regulated (P<0.05), the mRNA expression level of GSK-3β was significantly down-regulated (P<0.01), and the protein expression levels of GSK-3β, p-GSK-3β-Tyr216, and p-PP2A were down-regulated (P<0.05, P<0.01), and the protein expression level of PP2A was significantly up-regulated (P<0.01). As compared with the model group, the mRNA expression level of PP2A in the high-dose Danzhi Xiaoyaosan group was significantly up-regulated (P<0.01), and that of GSK-3β was significantly down-regulated (P<0.01), whereas the protein expression levels of p-PP2A, p-GSK-3β-Tyr216, and p-tau were down-regulated (P<0.05, P<0.01), and the protein expression level of PP2A was significantly up-regulated (P<0.01). As compared with the model group, the mRNA expression level of GSK-3β was significantly down-regulated in the medium-dose Danzhi Xiaoyaosan group (P<0.01), the protein expression levels of GSK-3β, p-GSK-3β-Tyr216, and p-tau were down-regulated (P<0.05, P<0.01), and the protein expression level of PP2A was significantly up-regulated (P<0.01). As compared with the model group, the mRNA expression level of PP2A was significantly up-regulated in the low-dose Danzhi Xiaoyaosan group (P<0.01), and that of GSK-3β was significantly down-regulated (P<0.01), whereas the protein expression levels of GSK-3β and p-GSK-3β-Tyr216 were down-regulated (P<0.05, P<0.01), and those of p-GSK-3β-Ser9 and PP2A were significantly up-regulated (P<0.01). ConclusionDanzhi Xiaoyaosan can improve the learning and memory ability of rats with AD, and its mechanism may be related to the regulation of the activities of GSK-3β and PP2A protein-related sites and the phosphorylation of tau protein.

Result Analysis
Print
Save
E-mail