1.Comparison of Wild and Cultivated Gardeniae Fructus Based on Traditional Quality Evaluation
Yuanjun SHANG ; Bo GENG ; Xin CHEN ; Qi WANG ; Guohua ZHENG ; Chun LI ; Zhilai ZHAN ; Junjie HU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):225-234
ObjectiveBased on traditional quality evaluation of Gardeniae Fructus(GF) recorded in historical materia medica, this study systematically compared the quality differences between wild and cultivated GF from morphological characteristics, microscopic features, and contents of primary and secondary metabolites. MethodsVernier calipers and analytical balances were used to measure the length, diameter and individual fruit weight of wild and cultivated GF, and the aspect ratio was calculated. A colorimeter was used to determine the chromaticity value of wild and cultivated GF, and the paraffin sections of them were prepared by safranin-fast green staining and examined under an optical microscope to observe their microstructure. Subsequently, the contents of water-soluble and alcohol-soluble extracts of wild and cultivated GF were detected by hot immersion method under the general rule 2201 in volume Ⅳ of the 2020 edition of the Pharmacopoeia of the People's Republic of China, the starch content was measured by anthrone colorimetric method, the content of total polysaccharides was determined by phenol-sulfuric acid colorimetric method, the sucrose content was determined by high performance liquid chromatography coupled with evaporative light scattering detection(HPLC-ELSD), and the contents of representative components in them were measured by ultra-performance liquid chromatography(UPLC). Finally, correlation analysis was conducted between quality traits and phenotypic traits, combined with multivariate statistical analysis methods such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), key differential components between wild and cultivated GF were screened. ResultsIn terms of traits, the wild GF fruits were smaller, exhibiting reddish yellow or brownish red hues with significant variation between batches. While the cultivated GF fruits are larger, displaying deeper orange-red or brownish red. The diameter and individual fruit weight of cultivated GF were significantly greater than those of wild GF, while the blue-yellow value(b*) of wild GF was significantly higher than that of cultivated GF. In the microstructure, the mesocarp of wild GF contained numerous scattered calcium oxalate cluster crystals, while the endocarp contained stone cell class round, polygonal or tangential prolongation, undeveloped seeds were visible within the fruit. In contrast, the mesocarp of cultivated GF contained few calcium oxalate cluster crystals, or some batches exhibited extremely numerous cluster crystals. The stone cells in the endocarp were predominantly round-like, with the innermost layer arranged in a grid pattern. Seeds were basically mature, and only a few immature seeds existed in some batches. Regarding primary metabolite content, wild GF exhibited significantly higher total polysaccharide level than cultivated GF(P<0.01). In category-specific component content, wild GF exhibited significantly higher levels of total flavonoids and total polyphenols compared to cultivated GF(P<0.01). Analysis of 12 secondary metabolites revealed that wild GF exhibited significantly higher levels of Shanzhiside, deacetyl asperulosidic acid methyl ester, gardenoside and chlorogenic acid compared to cultivated GF(P<0.01). Conversely, the contents of genipin 1-gentiobioside, geniposide and genipin were significantly lower in wild GF(P<0.01). ConclusionThere are significant differences between wild and cultivated GF in terms of traits, microstructure, and contents of primary and secondary metabolites. At present, the quality evaluation system of cultivated GF remains incomplete, and this study provides a reference for guiding the production of high-quality GF medicinal materials.
2.Herbal Textual Research on Malvae Semen in Famous Classical Formulas
Dongxue CHEN ; Yibo LIU ; Yangyang YU ; Guoshuai LYU ; Huili WU ; Xinle HAN ; Yue TAN ; Minhui LI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):252-264
The medicinal use of Malvae Semen has a long history. In this paper, by consulting the ancient materia medica, prescription, agronomy, literature and other aspects of the classics, the name, origin, evolution of scientific name, quality, harvesting and processing, functions and indications and others of Malvae Semen were systematically sorted out and verified, so as to provide a basis for the development and utilization of famous classical formulas containing this herb. According to the textual research, Shennong Bencaojing began to use Dongkuizi as the correct name, which was used in the past dynasties, and there were also aliases such as Kuicaizi, Huacai, and Kuizi. Through the original research, it can be seen that Kuicai is the mainstream original plant of Malvae Semen, that is, Malva verticillata var. crispa, the Alcea rosea and M. cathayensis are also used. In modern times, the seeds of Abutilon theophrasti have been passed off as Malvae Semen, while the seeds of M. verticillata var. crispa have rarely been used in medicine. And Abutili Semen has been another medicinal material with different efficacy since the collection of Newly Revised Materia Medica in the Tang dynasty. Since the Ming and Qing dynasties, the cultivation of Kuicai has been decreasing, while A. theophrasti is more common and easy to obtain, and Abutili Semen and Malvae Semen are similar in morphology and confused, which should be corrected. In addition, Malvae Fructus is a Mongolian customary medicinal herb, which is different from the traditional use of seeds in traditional Chinese medicine. Kuicai, as an important vegetable in history, was widely cultivated and gradually shrunk after the Song dynasty, it is now mainly produced in southern provinces. The quality evaluation of Malvae Semen is better for those with dry bodies, full grain, grayish brown color, no mud, and no impurities. The harvesting is generally in the autumn and winter. After drying, it is seeded, sieved peel and impurities, mashed, or slightly stir-fried to yellow-white color with gentle fire. It is sweet, cold and slippery in nature and taste, with the main effects of laxation, diuresis, lactation and elimination of swelling. The efficacy of Abutili Semen is clearing heat and removing toxicity, promoting diuresis and removing nebula, the efficacy is quite different from that of Malvae Semen. Based on the results of textual research, it is suggested that M. verticillata var. crispa should be used as the medicinal source of Malvae Semen in the development of famous classical formulas, the corresponding processing methods should be selected according to the requirements of drug processing in the formulas, while the raw products are recommended to be used if the processing is not specified.
3.Herbal Textual Research on Malvae Semen in Famous Classical Formulas
Dongxue CHEN ; Yibo LIU ; Yangyang YU ; Guoshuai LYU ; Huili WU ; Xinle HAN ; Yue TAN ; Minhui LI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):252-264
The medicinal use of Malvae Semen has a long history. In this paper, by consulting the ancient materia medica, prescription, agronomy, literature and other aspects of the classics, the name, origin, evolution of scientific name, quality, harvesting and processing, functions and indications and others of Malvae Semen were systematically sorted out and verified, so as to provide a basis for the development and utilization of famous classical formulas containing this herb. According to the textual research, Shennong Bencaojing began to use Dongkuizi as the correct name, which was used in the past dynasties, and there were also aliases such as Kuicaizi, Huacai, and Kuizi. Through the original research, it can be seen that Kuicai is the mainstream original plant of Malvae Semen, that is, Malva verticillata var. crispa, the Alcea rosea and M. cathayensis are also used. In modern times, the seeds of Abutilon theophrasti have been passed off as Malvae Semen, while the seeds of M. verticillata var. crispa have rarely been used in medicine. And Abutili Semen has been another medicinal material with different efficacy since the collection of Newly Revised Materia Medica in the Tang dynasty. Since the Ming and Qing dynasties, the cultivation of Kuicai has been decreasing, while A. theophrasti is more common and easy to obtain, and Abutili Semen and Malvae Semen are similar in morphology and confused, which should be corrected. In addition, Malvae Fructus is a Mongolian customary medicinal herb, which is different from the traditional use of seeds in traditional Chinese medicine. Kuicai, as an important vegetable in history, was widely cultivated and gradually shrunk after the Song dynasty, it is now mainly produced in southern provinces. The quality evaluation of Malvae Semen is better for those with dry bodies, full grain, grayish brown color, no mud, and no impurities. The harvesting is generally in the autumn and winter. After drying, it is seeded, sieved peel and impurities, mashed, or slightly stir-fried to yellow-white color with gentle fire. It is sweet, cold and slippery in nature and taste, with the main effects of laxation, diuresis, lactation and elimination of swelling. The efficacy of Abutili Semen is clearing heat and removing toxicity, promoting diuresis and removing nebula, the efficacy is quite different from that of Malvae Semen. Based on the results of textual research, it is suggested that M. verticillata var. crispa should be used as the medicinal source of Malvae Semen in the development of famous classical formulas, the corresponding processing methods should be selected according to the requirements of drug processing in the formulas, while the raw products are recommended to be used if the processing is not specified.
4.Herbal Textual Research on Arcae Concha in Famous Classical Formulas
Yiqin ZHANG ; Yixue ZHUANG ; Yinan LU ; Yanning CHEN ; Yichong CHEN ; Shuiyu XU ; Zhilai ZHAN ; Chengzi YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):208-218
In this paper, the name, origin, producing area, harvesting, processing and functional indications of Arcae Concha were systematically combed and verified by consulting the ancient and modern literature, in order to provide a basis for the development of famous classical formulas containing Arcae Concha. Arcae Concha was first recorded in the name of Han in Bencao Shiyi, but later, due to the influence of LI Shizhen's error of combining Han item with Kuiha in the Ming dynasty, there were aliases such as Kuilu and Fulao, and Yizong Bidu began to include Walengzi as its correct name and has been used ever since. The textual descriptions and illustrations of the medicinal materials of Arcae Concha contained in the materia medica of the past generations were consistent with the modern Arca inflata, A. subcrenata and A. granosa. In ancient times, there were medicinal records of two parts of shell and meat, but now the shell is used as medicine, and the meat is mostly edible. In ancient times, Zhejiang, Shandong, Guangdong and Guangxi were the main producing areas, and Zhejiang was the best. It is now believed that A. inflata is mostly distributed in the northern part of the Huanghai Sea, A. granosa is mostly distributed in the coastal areas south of Shandong Peninsula in China, and A. subcrenata is widely distributed in the coastal areas of China. Its quality is better in a complete, white, no residual meat and sand. In ancient times, there was no clear harvesting period, and the processing was mainly based on vinegar quenching after calcination or powdering of calcined shell, but now the harvesting period is autumn and winter. After harvesting, it is directly washed and crushed for raw use or processed by calcined method. The records of the medicinal materials in the past dynasties on the properties of Arcae Concha were mainly warm, sweet, salty and mild, and it is now believed that Arcae Concha is salty in taste and mild in nature. In ancient times, it was believed that Arcae Concha were mainly used for coldness in the heart and abdomen, coldness in the waist and spine, benefiting the five internal organs, strengthening the stomach. Nowadays, it is believed that Arcae Concha can eliminate phlegm and remove blood stasis, soften the hardness and dissipate the lumps, produce acid and relieve pain. It can be used in the treatment of stubborn phlegm, gall tumor, scrofula and other symptoms. In conclusion, it is suggested that for the famous classical formulas containing Arcae Concha, the corresponding methods should be selected according to the processing requirements of the drug in the formulas, while those without processing requirements can be determined according to the functional position of the products.
5.Herbal Textual Research on Kochiae Fructus in Famous Classical Formulas
Huifang HU ; Liping YANG ; Fei CHEN ; Xiaohui MA ; Ling JIN ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):247-257
In this paper, by referring to ancient and modern literature, the textual research of Kochiae Fructus has been conducted to clarify the name, origin, distribution of production areas, quality specification, taste and efficacy, harvesting time, processing and compatibility taboo, so as to provide reference and basis for the development and utilization of related famous classical formulas. According to the investigation, it can be seen that Difuzi was first published in Sheng Nong's Herbal Classic, and has been used as the official name throughout history. It is also known by other names such as Dimai, Dikui, and Luozhou. The mainstream source of Difuzi in materia medica throughout history is the dried ripe fruit of Kochia scoparia, which is consistent throughout history. In the Han dynasty, it was recorded that Kochiae Fructus was produced in Jingzhou(Hubei province), while modern literature records its distribution throughout the country, so it does not have obvious geoherbalism. The harvesting period of Kochiae Fructus is mostly in the late autumn, and the quality is best when it is full, gray green in color, and no impurities. There are two processing methods for its origin:from the Southern and Northern dynasties to the Ming dynasty, it was dried in the shade, and after the founding of the People's Republic of China, it was dried in the sun. There are few records about the processing of Kochiae Fructus, and its clinical application is mostly based on raw products as medicine. The seedlings are harvested in February of the lunar calendar, and the leaves are taken in April and May, processing in the place of origin is shade drying, the processing methods include burning ash and frying frost, pounding juice and wine soaking. For internal use, it is mostly decocted or mashed, while for external use, it is mostly washed with decoction or taken in a soup bath. Throughout history, it has been recorded that Kochiae Fructus is bitter and cold, and is mainly used for treating bladder fever. After the founding of the People's Republic of China, most of the literature classified it as damp-clearing medicine. Since the 1985 edition of Chinese Pharmacopoeia, it has been recorded that Kochiae Fructus has a pungent and bitter taste, and a cold nature. Returning to the kidney and bladder meridians with functions of clearing heat and dampness, dispelling wind and relieving itching. The clinical contraindications are mainly prohibited for those with deficiency and no dampness and heat. Throughout history, it has been recorded that the taste of the seedlings and leaves is bitter and cold for treatment of dysentery. Since modern times, it has been used to regulate the liver, spleen and large intestine meridians, with functions such as clearing heat and detoxifying, and diuresis. Based on the textual research, it is recommended to use the dried ripe fruit of K. scoparia when developing the famous classical formulas containing Kochiae Fructus, and processing shall be carried out according to the original processing requirements. If the original formula does not specify the processing requirements, the raw products is taken into medicine.
6.Herbal Textual Research on Cnidii Fructus in Famous Classical Formulas
Huifang HU ; Liping YANG ; Fei CHEN ; Xiaohui MA ; Ling JIN ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):243-253
In this paper, by referring to ancient and modern literature, the textual research of Cnidii Fructus has been conducted to clarify the name, origin, distribution of production areas, quality specification, nature and flavour, efficacy, harvesting and processing, compatibility taboo and others, so as to provide reference and basis for the development and utilization of the relevant famous classical formulas. After textual research, it can be verified that Cnidii Fructus was first published in Sheng Nong's Herbal Classic, the materia medica of all dynasties was named Shechuangzi, and there are also aliases such as Shesu, Shemi, and Qiangmi. The main source for generations was the dried ripe fruit of Cnidium monnieri, and ancient and modern consistent. From the Eastern Han dynasty to Tang dynasty, the origin of Cnidii Fructus was Zibo, Shandong province. During the Five dynasties, it expanded to Yangzhou in Jiangsu province and Xiangyang in Hubei province, the Song dynasty added Shangqiu in Henan province, and it was considered that Yangzhou, Xiangyang and Shangqiu were its genuine producing areas. It was more widely distributed in Ming and Qing dynasties. After the founding of the People's Republic of China, the origin is clearly distributed throughout the country. For its quality evaluation, generally full grain, gray yellow color, strong aroma is the best. The harvesting period in the past dynasties was mostly the fifth lunar month, and the fruit was collected to remove impurities and dry. The mainstream processing in producing area of the past dynasties was net selection of raw products, mixing and steaming with the juice of Rehmanniae Radix and stir-frying were the mainstream processing methods in the past, there were also stir-frying with honey, stir-frying with salt and rice wine, immersing and steaming with rice wine and other methods. In recent times, it has been used in raw products as medicine. Sheng Nong's Herbal Classic recorded Cnidii Fructus was bitter, Supplementary Records of Famous Physicians recorded its acrid for the first time. It was recorded in the Ming dynasty that its nature was warm, acted on the kidney meridian, and had small toxicity. After the founding of the People's Republic of China, most of the literature classified it as a medicine to attack poison, kill insects and relieve itching with the functions of dispelling pathogenic wind and removing dampness, destroying parasites and elieving itching, warming kidney and activating Yang. Clinical contraindications are mainly contraindicated for people with damp-heat from the lower-jiao or kidney heat. Based on the textual research, it is suggested that when developing the famous classical formulas containing Cnidii Fructus, the source shall be the dried ripe fruit of C. monnieri, and then it shall be processed according to the original formulas. If there is no requirement for processing in the formulas, the raw products can be taken into medicine.
7.Herbal Textual Research on Bruceae Fructus in Famous Classical Formulas
Shuiyu XU ; Yixue ZHUANG ; Yiqin ZHANG ; Yichong CHEN ; Yanning CHEN ; Zhilai ZHAN ; Chengzi YANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):11-19
Through consulting the ancient herbal books and modern literature, this paper has carried out the textual research on the name, origin, place of origin, harvesting and processing, and other contents of Bruceae Fructus, combed its ancient and modern medicinal history, so as to provide reference for the development of famous classical formulas containing Bruceae Fructus. Through the herbal textual research, It can be verified that, since the Qing dynasty, Bruceae Fructus has been recorded in the materia medica, most of the materia medica in previous dynasties took Bruceae Fructus as its proper name, and Laoyadan, Kushenzi and Yadanzi as the aliases. The main origin of Bruceae Fructus is Brucea javanica, its medicinal part is the fruit, which is harvested from August to October every year, the fruit can be harvested when it is ripe. Bruceae Fructus was first distributed in Fujian, Guangdong and Guangxi, and gradually expanded to the south of China with the change of time. The traditional processing method of Bruceae Fructus is mainly to remove the shell and kernel, and remove the oil by frosting. The 2020 edition of Chinese Pharmacopoeia stipulates that its processing method is to remove the shell and impurities. Based on the research results, it is suggested that the dried mature fruit of B. javanica should be selected for the development of famous classical formulas containing this herb, and the raw products can be used if the original formula does not specify the processing requirements.
8.Herbal Textual Research on Selaginellae Herba in Famous Classical Formulas
Yinan LU ; Jing MENG ; Yangyang CHEN ; Zhilai ZHAN ; Chengzi YANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):31-39
By consulting the ancient Chinese herbal books, medical books and formularies of the past dynasties, and combining with modern research data, this paper makes a systematic textual research on the name, origin, place of origin, traditional quality evaluation, harvesting and processing of Selaginellae Herba, so as to provide a basis for the development and utilization of the relevant famous classical formulas. According to the textual research, Juanbai is the correct name of the herbal medicine in all dynasties, and there are also aliases such as Baozu, Qiugu, Jiaoshi and Jiusi Huanhuncao. The origin of Selaginellae Herba in the ancient herbal books was Selaginella tamariscina in all dynasties. Since the Republic of China, S. pulvinata has been gradually used as another origin of Selaginellae Herba. In ancient times, the producing area of S. tamariscina was mainly in Shandong, Hebei, Henan, Shaanxi, Jiangsu and Sichuan, etc. Nowadays, it is produced all over the country. S. pulvinata is mainly produced in Guangxi, Fujian, Sichuan, Guizhou, Yunnan, Hebei and so on. Since the recent times, it is concluded that the quality of the green color, complete and unbroken is good. Before the Qing dynasty, it was recorded that the harvesting time of Selaginellae Herba was generally from April to July, and it was expanded to all year round since the Qing dynasty. After harvesting, remove the sediment(sand and mud), cut off the fibrous roots and dry in the shade or in the sun. The processing methods in all dynasties were mainly carbonizing by stir-frying and stir-bake to brown, and some ancient books contained the processing method of brine boiling, which was rarely used in modern times. Based on the results, it is recommended that S. tamariscina should be used as the base material of Selaginellae Herba. Because of more impurities, it should be fully purified to ensure the cleanliness of the herb, and the processing method can be based on the prescription requirements, if the processing requirements are not specified, the raw products can be used, charcoal products is recommended for use as an hemostatic.
9.Quality Evaluation of Atractylodis Macrocephalae Rhizoma in Different Production Methods Based on Traditional Traits
Jinxiu QIAN ; Yihan WANG ; Yapeng WANG ; Guoliang YU ; Qiuxiang PAN ; Jiawei SHI ; Meiping CHEN ; Yangqing LIU ; Lun LU ; Yanmeng LIU ; Tiegui NAN ; Liping KANG ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(1):43-52
ObjectiveBased on the experience of traditional quality evaluation, the quality of Atractylodis Macrocephalae Rhizoma(AMR) with different production methods such as direct seeding, transplanting after seedling raising, topping and non-topping, and difference in growth years was compared. MethodVernier caliper was used to measure the trait data of AMR in different production methods. Paraffin sections of AMR with different production methods were made by saffron solid green staining, and the microstructure was observed. The contents of water-soluble and alcohol-soluble extracts in AMR with different production methods were determined according to the 2020 edition of Chinese Pharmacopoeia. The content of water-soluble total polysaccharides in AMR with different production methods was detected by sulfuric acid-anthrone method. Fiber analyzer was used to detect the content of fiber components in AMR with different production methods. The contents of monosaccharides, oligosaccharides and some secondary metabolites in AMR with different production methods were detected by ultra performance liquid chromatography(UPLC), and the differences of chemical components were compared by multivariate statistical analysis methods such as principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA). ResultIn terms of traits, the 3-year-old AMR with direct seeding and without topping was close to the high-quality AMR with "phoenix-head and crane-neck, strong sweetness and clear aroma" recorded in ancient materia medica, followed by the 3-year-old AMR with topping after transplanting, while the 2-year-old AMR with topping after transplanting with high market circulation rate was generally fat and strong with mild odor. In the microscopic aspect, the arrangement of xylem vessels and fiber bundles in the 3-year-old samples formed two obvious rings. Compared with the 2-year-old samples cultivated in Bozhou and Zhejiang, the 3-year-old samples without topping after transplanting had more wood fibers. In terms of chemical composition, the contents of 70% ethanol extract, fructose, glucose, sucrose, 1-kestose, atractylenolide Ⅰ, chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid and other components in 3-year-old AMR with direct seeding and without topping were significantly higher than those in the other three samples(P<0.05). The contents of cellulose, 70% ethanol extract, sucrose, atractylenolide Ⅰ, atractylone and other components in 3-year-old AMR with topping after transplanting were significantly higher than those in the 2-year-old AMR with high market circulation rate(P<0.05), while the contents of water-soluble extract and water-soluble total polysaccharides in 2-year-old samples with topping after transplanting were significantly higher than those in the 3-year-old AMR with topping after transplanting, direct seeding and without topping(P<0.05). ConclusionUnder the current mainstream production mode, too much manual intervention makes AMR heavily enriched in polysaccharides and increased the yield, but the accumulation of sweet substances, fragrant substances and fiber substances is insufficient, which affects its quality. The current quality standard of AMR has some shortcomings in guiding the high quality production of it, it is suggested to revise the quality standard of AMR, supplement the quantitative analysis of secondary metabolites, and strengthen the production of imitation wild AMR.
10.Herbal Textual Research on Olibanum in Famous Classical Formulas
Haiyan ZHOU ; Qingqing WANG ; Qi ZHANG ; Suping XIAO ; Meng CHEN ; Jianxin ZHOU ; Yeda ZHANG ; Danyang JIA ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(4):55-66
By consulting the ancient and moderm literature, this paper makes a textual research on the name, origin, quality evaluation, harvesting and processing of Olibanum, so as to provide a basis for the development of the famous classical formulas containing this medicinal material. According to the herbal textual research, the results showed that Olibanum was first described as a medicinal material by the name of Xunluxiang in Mingyi Bielu(《名医别录》), until Ruxiang had been used as the correct name since Bencao Shiyi(《本草拾遗》) in Tang dynasty. The main origin was Boswellia carterii from Burseraceae family. The mainly producing areas in ancient description were ancient India and Arabia, while the modern producing areas are Somalia, Ethiopia and the southern Arabian Peninsula. The medicinal part of Olibanum in ancient and modern times is the resin exuded from the bark, which has been mainly harvested in spring and summer. It is concluded that the better Olibanum has light yellow, granular, translucent, no impurities such as sand and bark, sticky powder and aromatic smell. There were many processing methods in ancient times, including cleansing(water flying, removing impurities), grinding(wine grinding, rush grinding), frying(stir-frying, rush frying, wine frying), degreasing, vinegar processing, decoction. In modern times, the main processing methods are simplified to cleansing, stir-frying and vinegar processing. Nowadays, the commonly used specifications include raw, fried and vinegar-processed products. Among the three specifications, raw products is the Olibanum after cleansing, fried products is a kind of Olibanum processed by frying method, vinegar-processed products is the processed products of pure frankincense mixed with vinegar. Based on the research results, it is recommended to select the resin exuded from the bark of B. carterii for the famous classical formulas such as Juanbitang containing Olibanum, processing method should be carried out in accordance with the processing requirements of the formulas, otherwise used the raw products if the formulas without clear processing requirements.

Result Analysis
Print
Save
E-mail