1.Spermine suppresses GBP5-mediated NLRP3 inflammasome activation in macrophages to relieve vital organ injuries in neonatal mice with enterovirus 71 infection.
Zhihua TIAN ; Qingqing YANG ; Xin CHEN ; Fangfang ZHANG ; Baimao ZHONG ; Hong CAO
Journal of Southern Medical University 2025;45(5):901-910
OBJECTIVES:
To observe the therapeutic effect of spermine in neonatal mouse models of severe hand, foot and mouth disease (HFMD) caused by enterovirus 71 (EV71) infection and explore its therapeutic mechanism in light of regulation of macrophage GBP5/NLRP3 inflammasome pathway.
METHODS:
Neonatal BALB/c mice (3-5 days old) were divided into control group, EV71 infection group and Spermine treatment group. The mice in the latter two groups received an intraperitoneal injection of 50 μL EV71 suspension (1×10⁶ TCID50 of EV71), followed 3 days later by intraperitoneal injection of 50 μL PBS or 100 μmol/L spermine. GBP5, NLRP3, CXCL10, and TNFSF10 expressions in heart, liver, lung and kidney tissues of the mice were detected using Western blotting and qPCR, and tissue pathologies and macrophage infiltration were assessed with HE staining and immunohistochemistry. In cultured THP-1 and RAW264.7 cells, the effects of EV71 infection, GBP5 siRNA transfection and treatment with spermine or eflornithine on GBP5, NLRP3, CXCL10, and TNFSF10 mRNA expressions were investigated using qPCR.
RESULTS:
In the neonatal mice, EV71 infection resulted in multiple organ damage, macrophage infiltration and activation of the GBP5/NLRP3 pathway, and spermine treatment significantly improved tissue injuries, reduced macrophage infiltration, and down-regulated the expressions of GBP5, NLRP3 and the inflammatory factors in the infected mice. In THP-1 and RAW264.7 cells, EV71 infection caused significant upregulation of GBP5, NLRP3, CXCL10, and TNFSF10 expressions, which were obviously lowered by spermine treatment. In THP-1 cells, treatment with eflornithine significantly suppressed the reduction of GBP5, NLRP3, CXCL10, and TNFSF10 expressions induced by GBP5 siRNA transfection.
CONCLUSIONS
Spermine suppressed EV71 infection-induced inflammatory responses by inhibiting GBP5-mediated NLRP3 inflammasome activation, suggesting a new strategy for treatment of severe HFMD.
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Mice
;
Macrophages/metabolism*
;
Enterovirus A, Human
;
Mice, Inbred BALB C
;
Inflammasomes/metabolism*
;
Spermine/therapeutic use*
;
Animals, Newborn
;
Humans
;
Enterovirus Infections
;
Hand, Foot and Mouth Disease/drug therapy*
;
RAW 264.7 Cells
;
Chemokine CXCL10/metabolism*
2.Expert consensus on the prevention and treatment of enamel demineralization in orthodontic treatment.
Lunguo XIA ; Chenchen ZHOU ; Peng MEI ; Zuolin JIN ; Hong HE ; Lin WANG ; Yuxing BAI ; Lili CHEN ; Weiran LI ; Jun WANG ; Min HU ; Jinlin SONG ; Yang CAO ; Yuehua LIU ; Benxiang HOU ; Xi WEI ; Lina NIU ; Haixia LU ; Wensheng MA ; Peijun WANG ; Guirong ZHANG ; Jie GUO ; Zhihua LI ; Haiyan LU ; Liling REN ; Linyu XU ; Xiuping WU ; Yanqin LU ; Jiangtian HU ; Lin YUE ; Xu ZHANG ; Bing FANG
International Journal of Oral Science 2025;17(1):13-13
Enamel demineralization, the formation of white spot lesions, is a common issue in clinical orthodontic treatment. The appearance of white spot lesions not only affects the texture and health of dental hard tissues but also impacts the health and aesthetics of teeth after orthodontic treatment. The prevention, diagnosis, and treatment of white spot lesions that occur throughout the orthodontic treatment process involve multiple dental specialties. This expert consensus will focus on providing guiding opinions on the management and prevention of white spot lesions during orthodontic treatment, advocating for proactive prevention, early detection, timely treatment, scientific follow-up, and multidisciplinary management of white spot lesions throughout the orthodontic process, thereby maintaining the dental health of patients during orthodontic treatment.
Humans
;
Consensus
;
Dental Caries/etiology*
;
Dental Enamel/pathology*
;
Tooth Demineralization/etiology*
;
Tooth Remineralization
3.Expert consensus on early orthodontic treatment of class III malocclusion.
Xin ZHOU ; Si CHEN ; Chenchen ZHOU ; Zuolin JIN ; Hong HE ; Yuxing BAI ; Weiran LI ; Jun WANG ; Min HU ; Yang CAO ; Yuehua LIU ; Bin YAN ; Jiejun SHI ; Jie GUO ; Zhihua LI ; Wensheng MA ; Yi LIU ; Huang LI ; Yanqin LU ; Liling REN ; Rui ZOU ; Linyu XU ; Jiangtian HU ; Xiuping WU ; Shuxia CUI ; Lulu XU ; Xudong WANG ; Songsong ZHU ; Li HU ; Qingming TANG ; Jinlin SONG ; Bing FANG ; Lili CHEN
International Journal of Oral Science 2025;17(1):20-20
The prevalence of Class III malocclusion varies among different countries and regions. The populations from Southeast Asian countries (Chinese and Malaysian) showed the highest prevalence rate of 15.8%, which can seriously affect oral function, facial appearance, and mental health. As anterior crossbite tends to worsen with growth, early orthodontic treatment can harness growth potential to normalize maxillofacial development or reduce skeletal malformation severity, thereby reducing the difficulty and shortening the treatment cycle of later-stage treatment. This is beneficial for the physical and mental growth of children. Therefore, early orthodontic treatment for Class III malocclusion is particularly important. Determining the optimal timing for early orthodontic treatment requires a comprehensive assessment of clinical manifestations, dental age, and skeletal age, and can lead to better results with less effort. Currently, standardized treatment guidelines for early orthodontic treatment of Class III malocclusion are lacking. This review provides a comprehensive summary of the etiology, clinical manifestations, classification, and early orthodontic techniques for Class III malocclusion, along with systematic discussions on selecting early treatment plans. The purpose of this expert consensus is to standardize clinical practices and improve the treatment outcomes of Class III malocclusion through early orthodontic treatment.
Humans
;
Malocclusion, Angle Class III/classification*
;
Orthodontics, Corrective/methods*
;
Consensus
;
Child
4.Gastric hamartomatous inverted polyps: a clinicopathological analysis of five cases
Zhihua DU ; Min HONG ; Zhifa ZHANG ; Jie ZHAO ; Xiaofeng LIN ; Haifeng YANG
Chinese Journal of Pathology 2024;53(3):282-287
Objective:To investigate the endoscopic and histopathological features, diagnosis and differential diagnosis of gastric hamartomatous inverted polyp (GHIP).Methods:Five cases of GHIP were collected at the University Town Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China, from May 2021 to May 2023. The endoscopic, pathological and immunohistochemical features of the 5 GHIP cases were analyzed. The relevant literature was reviewed.Results:There were 3 males and 2 females, aged from 49 to 60 years, with a mean age of 56 years. The lesions were located in the fundus and body of the stomach, and presented as polyps or masses under endoscopy. Microscopically, the lesions were mainly in the submucosa and consisted of lobulated or clustered gastric glandular epithelium surrounded by hyperplastic smooth muscle. In some areas, there were differentiated glandular elements mimicking the normal gastric mucosa. The irregularly dilated glandular elements in the center were lined by hyperplastic foveolar epithelium, while the glands in the periphery were fundic or pyloric glands. In addition, in some areas, the glands showed cystic expansion, disordered arrangement and lack of differentiation. The hyperplastic glandular epithelium included foveolar epithelium, fundic gland and pyloric gland. There were scattered neuroendocrine cells and smooth muscle bundles in the stroma. Immunohistochemically, the tumor cells were positive for MUC5AC, MUC6, Pepsinogen Ⅰ and H +/K + ATPase β, but negative for MUC2. The scattered neuroendocrine cells were positive for synaptophysin, and the desmin stain highlighted hyperplastic smooth muscle bundles. One case was classified as type 2 gastric inverted polyp, and 4 cases were classified as type 3. Conclusions:GHIP is a rare gastric polyp with unique histological features. It should be distinguished from inverted hyperplastic polyp, gastritis cystica profunda, adenomyoma, hyperplastic polyps and well-differentiated gastric tubular adenocarcinoma, etc. Improving the understanding of its pathogenesis and diagnostic features can help avoid misdiagnoses.
5.Respiratory virus infection and its influence on outcome in children with septic shock
Gang LIU ; Chenmei ZHANG ; Ying LI ; Junyi SUN ; Yibing CHENG ; Yuping CHEN ; Zhihua WANG ; Hong REN ; Chunfeng LIU ; Youpeng JIN ; Sen CHEN ; Xiaomin WANG ; Feng XU ; Xiangzhi XU ; Qiujiao ZHU ; Xiangdie WANG ; Xinhui LIU ; Yue LIU ; Yang HU ; Wei WANG ; Qi AI ; Hongxing DANG ; Hengmiao GAO ; Chaonan FAN ; Suyun QIAN
Chinese Journal of Pediatrics 2024;62(3):211-217
Objective:To investigate respiratory virus infection in children with septic shock in pediatric care units (PICU) in China and its influence on clinical outcomes.Methods:The clinical data of children with septic shock in children′s PICU from January 2018 to December 2019 in 10 Chinese hospitals were retrospectively collected. They were divided into the pre-COVID-19 and post-COVID-19 groups according to the onset of disease, and the characteristics and composition of respiratory virus in the 2 groups were compared. Matching age, malignant underlying diseases, bacteria, fungi and other viruses, a new database was generated using 1∶1 propensity score matching method. The children were divided into the respiratory virus group and non-respiratory virus group according to the presence or absence of respiratory virus infection; their clinical characteristics, diagnosis, and treatment were compared by t-test, rank sum test and Chi-square test. The correlation between respiratory virus infection and the clinical outcomes was analyzed by logistic regression. Results:A total of 1 247 children with septic shock were included in the study, of them 748 were male; the age was 37 (11, 105) months. In the pre-and post-COVID-19 groups, there were 530 and 717 cases of septic shock, respectively; the positive rate of respiratory virus was 14.9% (79 cases) and 9.8% (70 cases); the seasonal distribution of septic shock was 28.9% (153/530) and 25.9% (185/717) in autumn, and 30.3% (161/530) and 28.3% (203/717) in winter, respectively, and the corresponding positive rates of respiratory viruses were 19.6% (30/153) and 15.7% (29/185) in autumn, and 21.1% (34/161) and 15.3% (31/203) in winter, respectively. The positive rates of influenza virus and adenovirus in the post-COVID-19 group were lower than those in the pre-COVID-19 group (2.1% (15/717) vs. 7.5% (40/530), and 0.7% (5/717) vs. 3.2% (17/530), χ2=21.51 and 11.08, respectively; all P<0.05). Rhinovirus virus were higher than those in the pre-Covid-19 group (1.7% (12/717) vs. 0.2% (1/530), χ2=6.51, P=0.011). After propensity score matching, there were 147 cases in both the respiratory virus group and the non-respiratory virus group. Rate of respiratory failure, acute respiratory distress, rate of disseminated coagulation dysfunction, and immunoglobulin usage of the respiratory virus group were higher than those of non-respiratory virus group (77.6% (114/147) vs. 59.2% (87/147), 17.7% (26/147) vs. 4.1% (6/147), 15.6% (25/147) vs. 4.1% (7/147), and 35.4% (52/147) vs. 21.4% (32/147); χ2=11.07, 14.02, 11.06 and 6.67, all P<0.05); and PICU hospitalization of the former was longer than that of the later (7 (3, 16) vs. 3 (1, 7)d, Z=5.01, P<0.001). Univariate logistic regression analysis showed that the presence of respiratory viral infection was associated with respiratory failure, disseminated coagulation dysfunction, the use of mechanical ventilation, and the use of immunoglobulin and anti-respiratory viral drugs ( OR=2.42, 0.22, 0.25, 0.56 and 1.12, all P<0.05). Conclusions:The composition of respiratory virus infection in children with septic shock is different between pre and post-COVID-19. Respiratory viral infection is associated with organ dysfunction in children with septic shock. Decreasing respiratory viral infection through respiratory protection may improve the clinical outcome of these children.
6.Predictive Value of Serum C18∶1-Cer and LPC18∶0 Levels in Early Pregnancy Women for Gestational Diabetes Mellitus
Lei CUI ; Lili GAO ; Zhihua SUN ; Ying WANG ; Liyun GONG ; Hong REN
Journal of Modern Laboratory Medicine 2024;39(2):103-107,145
Objective To explore the value of serum stearoyl sphingosine(C18∶1-Cer)and 1-stearoyl-sn-glycero-3-phospho-choline(LPC 18∶0)levels in pregnant women's serum samples during pregnancy in predicting gestational diabetes mellitus(GDM).Methods The clinical data and laboratory indicators of 126 pregnant women were retrospectively analyzed.The sub-jects were divided into GDM group(n=66)and control group(n=60)according to the GDM diagnosis results.Mass spec-trometry was used to detect the serum C18∶1-Cer and LPC18∶0 levels of the subjects in early and mid pregnancy.Logistic re-gression analysis was used to screen out the risk factors for GDM.Receiver operating characteristic(ROC)curve was used to evaluate the predictive value of C18∶1-Cer,LPC18∶0 and their combination for GDM.Results Compared with the control group,the serum C18∶1-Cer and LPC18∶0 levels of the subjects in the GDM group were significantly increased in early(18.92±2.77ng/ml vs 23.47±4.18ng/ml,41.32±17.55ng/ml vs 88.08±16.02ng/ml)and mid pregnancy(23.14±4.10ng/ml vs 18.76±4.05ng/ml,84.60±14.53ng/ml vs 40.50±17.79ng/ml),and the differences were statistically significant(t=7.127,15.637;-5.984,2.174,all P<0.05)C18∶1-Cer was positively correlated with fasting plasma glucose(FPG),fasting plasma insulin(FPI),homeostasis model assessment of insulin resistance(HOMA-IR),glycated hemoglobin(HbA1c)and triglyceride(TG)(r=0.458,0.209,0.317,0.223,0.219,all P<0.05).LPC18.0 was positively correlated with FPG,FPI,HOMA-IR,HbA1c,total cholesterol(TC)and TG(r= 0.715,0.426,0.580,0.465,0.232,0.372,all P<0.05).Logistic regression analysis results showed that C18∶1-Cer[OR(95%CI):1.522(1.136~2.039),P<0.05]and LPC18:0[OR(95%CI):1.198(1.102~1.302),P<0.001]were independent risk factors for GDM.ROC curve analysis results showed that the area under the curve(AUC)of serum C18∶1-Cer,LPC18∶0 and the combination of the two indicators were 0.819,0.971 and 0.986,respectively.The predictive performance of the combination of the two indicators was better than that of the single detection.Conclusion Serum C18∶1-Cer and LPC18∶0 in early pregnancy were closely related to the occurrence of GDM.C18∶1-Cer combined with LPC 18∶0 has a certain predictive value for the early diagnosis of GDM.
7.Early outcomes of domestic left ventricular assist device implantation with or without concomitant mitral valvuloplasty
Zhihua WANG ; Zeyuan ZHAO ; Junlong HU ; Junjie SUN ; Kun LIU ; Xiaoxia DUAN ; Sheng WANG ; Zhaoyun CHENG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(11):1599-1605
Objective To compare the early outcomes of domestic third-generation magnetically levitated left ventricular assist device (LVAD) with or without concomitant mitral valvuloplasty (MVP). Methods The clinical data of 17 end-stage heart failure patients who underwent LVAD implantation combined with preoperative moderate to severe mitral regurgitation in Fuwai Central China Cardiovascular Hospital from May 2018 to March 2023 were retrospectively analyzed. The patients were divided into a LVAD group and a LVAD+MVP group based on whether MVP was performed simultaneously, and early outcomes were compared between the two groups. Results There were 4 patients in the LVAD group, all males, aged (43.5±5.9) years, and 13 patients in the LVAD+MVP group, including 10 males and 3 females, aged (46.8±16.7) years. All the patients were successful in concomitant MVP without mitral reguragitation occurrence. Compared with the LVAD group, the LVAD+MVP group had a lower pulmonary artery systolic pressure and pulmonary artery mean pressure 72 h after operation, but the difference was not statistically different (P>0.05). Pulmonary artery systolic pressure was significantly lower 1 week after operation, as well as pulmonary artery systolic blood pressure and pulmonary artery mean pressure at 1 month after operation (P<0.01). There was no statistically significant difference in blood loss, operation time, cardiopulmonary bypass time, aortic cross-clamping time, mechanical ventilation time, or ICU stay time between the two groups (P>0.05). The differences in 1-month postoperative mortality, acute kidney injury, reoperation, gastrointestinal bleeding, and thrombosis and other complications between the two groups were not statistically significant (P>0.05). Conclusion Concomitant MVP with implantation of domestic third-generation magnetically levitated LVAD is safe and feasible, and concomitant MVP may improve postoperative hemodynamics without significantly increasing perioperative mortality and complication rates.
8.SiO2 Induces Iron Overload and Ferroptosis in Cardiomyocytes in a Silicosis Mouse Model
Wang YONGHENG ; Li NING ; Guan YI ; LI TONG ; Zhang YUXIU ; Cao HONG ; Yu ZHIHUA ; Li ZHIHENG ; Li SHUOYAN ; Hu JIAHAO ; Zhou WENXIN ; Qin SISI ; Li SHUANG ; Yao SANQIAO
Biomedical and Environmental Sciences 2024;37(6):617-627
Objective The aim of this study was to explore the role and mechanism of ferroptosis in SiO2-induced cardiac injury using a mouse model. Methods Male C57BL/6 mice were intratracheally instilled with SiO2 to create a silicosis model.Ferrostatin-1(Fer-1)and deferoxamine(DFO)were used to suppress ferroptosis.Serum biomarkers,oxidative stress markers,histopathology,iron content,and the expression of ferroptosis-related proteins were assessed. Results SiO2 altered serum cardiac injury biomarkers,oxidative stress,iron accumulation,and ferroptosis markers in myocardial tissue.Fer-1 and DFO reduced lipid peroxidation and iron overload,and alleviated SiO2-induced mitochondrial damage and myocardial injury.SiO2 inhibited Nuclear factor erythroid 2-related factor 2(Nrf2)and its downstream antioxidant genes,while Fer-1 more potently reactivated Nrf2 compared to DFO. Conclusion Iron overload-induced ferroptosis contributes to SiO2-induced cardiac injury.Targeting ferroptosis by reducing iron accumulation or inhibiting lipid peroxidation protects against SiO2 cardiotoxicity,potentially via modulation of the Nrf2 pathway.
9.Hotspots and challenges in blocking the mother-to-child transmission of hepatitis B virus
Xueru YIN ; Ruixuan HONG ; Zhihua LIU ; Jinlin HOU
Journal of Clinical Hepatology 2024;40(11):2141-2144
Chronic hepatitis B virus(HBV)infection remains a major public health challenge in China,affecting over 70 million people and posing great challenges to the prevention and control of the disease.At present,both the government and sectors of the society are making efforts to achieve the goal of eliminating viral hepatitis as a public health threat by 2030.Mother-to-child transmission is the main route of transmission of HBV,and therefore,blocking the mother-to-child transmission of HBV is the key link in eliminating viral hepatitis.At present,several critical issues still remain unresolved,including the long-term safety of tenofovir alafenamide fumarate during pregnancy,the safety of antiviral therapy in early pregnancy,the effectiveness of immunoglobulin-free strategy,and the risk of HBV transmission through germ cells.Addressing these challenges is important for promoting the blocking of the mother-to-child transmission of HBV and accelerating the progress toward the 2030 goals.
10.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.

Result Analysis
Print
Save
E-mail