1.Efficacy and Safety of Automated Insulin Delivery Systems in Patients with Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis
Wenqi FAN ; Chao DENG ; Ruoyao XU ; Zhenqi LIU ; Richard David LESLIE ; Zhiguang ZHOU ; Xia LI
Diabetes & Metabolism Journal 2025;49(2):235-251
Background:
Automated insulin delivery (AID) systems studies are upsurging, half of which were published in the last 5 years. We aimed to evaluate the efficacy and safety of AID systems in patients with type 1 diabetes mellitus (T1DM).
Methods:
We searched PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov until August 31, 2023. Randomized clinical trials that compared AID systems with other insulin-based treatments in patients with T1DM were considered eligible. Studies characteristics and glycemic metrics was extracted by three researchers independently.
Results:
Sixty-five trials (3,623 patients) were included. The percentage of time in range (TIR) was 11.74% (95% confidence interval [CI], 9.37 to 14.12; P<0.001) higher with AID systems compared with control treatments. Patients on AID systems had more pronounced improvement of time below range when diabetes duration was more than 20 years (–1.80% vs. –0.86%, P=0.031) and baseline glycosylated hemoglobin lower than 7.5% (–1.93% vs. –0.87%, P=0.033). Dual-hormone full closed-loop systems revealed a greater improvement in TIR compared with hybrid closed-loop systems (–19.64% vs. –10.87%). Notably, glycemia risk index (GRI) (–3.74; 95% CI, –6.34 to –1.14; P<0.01) was also improved with AID therapy.
Conclusion
AID systems showed significant advantages compared to other insulin-based treatments in improving glucose control represented by TIR and GRI in patients with T1DM, with more favorable effect in euglycemia by dual-hormone full closedloop systems as well as less hypoglycemia for patients who are within target for glycemic control and have longer diabetes duration.
3.Efficacy and Safety of Automated Insulin Delivery Systems in Patients with Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis
Wenqi FAN ; Chao DENG ; Ruoyao XU ; Zhenqi LIU ; Richard David LESLIE ; Zhiguang ZHOU ; Xia LI
Diabetes & Metabolism Journal 2025;49(2):235-251
Background:
Automated insulin delivery (AID) systems studies are upsurging, half of which were published in the last 5 years. We aimed to evaluate the efficacy and safety of AID systems in patients with type 1 diabetes mellitus (T1DM).
Methods:
We searched PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov until August 31, 2023. Randomized clinical trials that compared AID systems with other insulin-based treatments in patients with T1DM were considered eligible. Studies characteristics and glycemic metrics was extracted by three researchers independently.
Results:
Sixty-five trials (3,623 patients) were included. The percentage of time in range (TIR) was 11.74% (95% confidence interval [CI], 9.37 to 14.12; P<0.001) higher with AID systems compared with control treatments. Patients on AID systems had more pronounced improvement of time below range when diabetes duration was more than 20 years (–1.80% vs. –0.86%, P=0.031) and baseline glycosylated hemoglobin lower than 7.5% (–1.93% vs. –0.87%, P=0.033). Dual-hormone full closed-loop systems revealed a greater improvement in TIR compared with hybrid closed-loop systems (–19.64% vs. –10.87%). Notably, glycemia risk index (GRI) (–3.74; 95% CI, –6.34 to –1.14; P<0.01) was also improved with AID therapy.
Conclusion
AID systems showed significant advantages compared to other insulin-based treatments in improving glucose control represented by TIR and GRI in patients with T1DM, with more favorable effect in euglycemia by dual-hormone full closedloop systems as well as less hypoglycemia for patients who are within target for glycemic control and have longer diabetes duration.
5.Efficacy and Safety of Automated Insulin Delivery Systems in Patients with Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis
Wenqi FAN ; Chao DENG ; Ruoyao XU ; Zhenqi LIU ; Richard David LESLIE ; Zhiguang ZHOU ; Xia LI
Diabetes & Metabolism Journal 2025;49(2):235-251
Background:
Automated insulin delivery (AID) systems studies are upsurging, half of which were published in the last 5 years. We aimed to evaluate the efficacy and safety of AID systems in patients with type 1 diabetes mellitus (T1DM).
Methods:
We searched PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov until August 31, 2023. Randomized clinical trials that compared AID systems with other insulin-based treatments in patients with T1DM were considered eligible. Studies characteristics and glycemic metrics was extracted by three researchers independently.
Results:
Sixty-five trials (3,623 patients) were included. The percentage of time in range (TIR) was 11.74% (95% confidence interval [CI], 9.37 to 14.12; P<0.001) higher with AID systems compared with control treatments. Patients on AID systems had more pronounced improvement of time below range when diabetes duration was more than 20 years (–1.80% vs. –0.86%, P=0.031) and baseline glycosylated hemoglobin lower than 7.5% (–1.93% vs. –0.87%, P=0.033). Dual-hormone full closed-loop systems revealed a greater improvement in TIR compared with hybrid closed-loop systems (–19.64% vs. –10.87%). Notably, glycemia risk index (GRI) (–3.74; 95% CI, –6.34 to –1.14; P<0.01) was also improved with AID therapy.
Conclusion
AID systems showed significant advantages compared to other insulin-based treatments in improving glucose control represented by TIR and GRI in patients with T1DM, with more favorable effect in euglycemia by dual-hormone full closedloop systems as well as less hypoglycemia for patients who are within target for glycemic control and have longer diabetes duration.
7.Efficacy and Safety of Automated Insulin Delivery Systems in Patients with Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis
Wenqi FAN ; Chao DENG ; Ruoyao XU ; Zhenqi LIU ; Richard David LESLIE ; Zhiguang ZHOU ; Xia LI
Diabetes & Metabolism Journal 2025;49(2):235-251
Background:
Automated insulin delivery (AID) systems studies are upsurging, half of which were published in the last 5 years. We aimed to evaluate the efficacy and safety of AID systems in patients with type 1 diabetes mellitus (T1DM).
Methods:
We searched PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov until August 31, 2023. Randomized clinical trials that compared AID systems with other insulin-based treatments in patients with T1DM were considered eligible. Studies characteristics and glycemic metrics was extracted by three researchers independently.
Results:
Sixty-five trials (3,623 patients) were included. The percentage of time in range (TIR) was 11.74% (95% confidence interval [CI], 9.37 to 14.12; P<0.001) higher with AID systems compared with control treatments. Patients on AID systems had more pronounced improvement of time below range when diabetes duration was more than 20 years (–1.80% vs. –0.86%, P=0.031) and baseline glycosylated hemoglobin lower than 7.5% (–1.93% vs. –0.87%, P=0.033). Dual-hormone full closed-loop systems revealed a greater improvement in TIR compared with hybrid closed-loop systems (–19.64% vs. –10.87%). Notably, glycemia risk index (GRI) (–3.74; 95% CI, –6.34 to –1.14; P<0.01) was also improved with AID therapy.
Conclusion
AID systems showed significant advantages compared to other insulin-based treatments in improving glucose control represented by TIR and GRI in patients with T1DM, with more favorable effect in euglycemia by dual-hormone full closedloop systems as well as less hypoglycemia for patients who are within target for glycemic control and have longer diabetes duration.
9.Epidemiological status, development trends, and risk factors of disability-adjusted life years due to diabetic kidney disease: A systematic analysis of Global Burden of Disease Study 2021.
Jiaqi LI ; Keyu GUO ; Junlin QIU ; Song XUE ; Linhua PI ; Xia LI ; Gan HUANG ; Zhiguo XIE ; Zhiguang ZHOU
Chinese Medical Journal 2025;138(5):568-578
BACKGROUND:
Approximately 40% of individuals with diabetes worldwide are at risk of developing diabetic kidney disease (DKD), which is not only the leading cause of kidney failure, but also significantly increases the risk of cardiovascular disease, causing significant societal health and financial burdens. This study aimed to describe the burden of DKD and explore its cross-country epidemiological status, predict development trends, and assess its risk factors and sociodemographic transitions.
METHODS:
Based on the Global Burden of Diseases (GBD) Study 2021, data on DKD due to type 1 diabetes (DKD-T1DM) and type 2 diabetes (DKD-T2DM) were analyzed by sex, age, year, and location. Numbers and age-standardized rates were used to compare the disease burden between DKD-T1DM and DKD-T2DM among locations. Decomposition analysis was used to assess the potential drivers. Locally weighted scatter plot smoothing and Frontier analysis were used to estimate sociodemographic transitions of DKD disability-adjusted life years (DALYs).
RESULTS:
The DALYs due to DKD increased markedly from 1990 to 2021, with a 74.0% (from 2,227,518 to 3,875,628) and 173.6% (from 4,122,919 to 11,278,935) increase for DKD-T1DM and DKD-T2DM, respectively. In 2030, the estimated DALYs for DKD-T1DM surpassed 4.4 million, with that of DKD-T2DM exceeding 14.6 million. Notably, middle-sociodemographic index (SDI) quintile was responsible for the most significant DALYs. Decomposition analysis revealed that population growth and aging were major drivers for the increased DKD DALYs in most regions. Interestingly, the most pronounced effect of positive DALYs change from 1990 to 2021 was presented in high-SDI quintile, while in low-SDI quintile, DALYs for DKD-T1DM and DKD-T2DM presented a decreasing trend over the past years. Frontiers analysis revealed that there was a negative association between SDI quintiles and age-standardized DALY rates (ASDRs) in DKD-T1DM and DKD-T2DM. Countries with middle-SDI shouldered disproportionately high DKD burden. Kidney dysfunction (nearly 100.0% for DKD-T1DM and DKD-T2DM), high fasting plasma glucose (70.8% for DKD-T1DM and 87.4% for DKD-T2DM), and non-optimal temperatures (low and high, 5.0% for DKD-T1DM and 5.1% for DKD-T2DM) were common risk factors for age-standardized DALYs in T1DM-DKD and T2DM-DKD. There were other specific risk factors for DKD-T2DM such as high body mass index (38.2%), high systolic blood pressure (10.2%), dietary risks (17.8%), low physical activity (6.2%), lead exposure (1.2%), and other environmental risks.
CONCLUSIONS
DKD markedly increased and varied significantly across regions, contributing to a substantial disease burden, especially in middle-SDI countries. The rise in DKD is primarily driven by population growth, aging, and key risk factors such as high fasting plasma glucose and kidney dysfunction, with projections suggesting continued escalation of the burden by 2030.
Humans
;
Global Burden of Disease
;
Risk Factors
;
Male
;
Female
;
Disability-Adjusted Life Years
;
Diabetic Nephropathies/epidemiology*
;
Middle Aged
;
Diabetes Mellitus, Type 2/epidemiology*
;
Adult
;
Diabetes Mellitus, Type 1/complications*
;
Aged
;
Adolescent
;
Young Adult
;
Quality-Adjusted Life Years
10.miR-15b-5p affects PIK3CA/AKT1 pathway through USP9X to alleviate airway inflammation in asthma.
Yuyang ZHOU ; Zhiguang WANG ; Yihua PIAO ; Xue HAN ; Yilan SONG ; Guanghai YAN ; Hongmei PIAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):193-203
Objective To investigate whether miR-15b-5p can alleviate airway inflammation in asthma by negatively regulating ubiquitin specific peptidase 9X (USP9X) to down-regulate the expression of phosphatidylinositol 4, 5-diphosphate 3-kinase catalytic subunit α/AKT serine/threonine kinase 1 (PIK3CA/AKT1) pathway. Methods USP9X was predicted to be a direct target of miR-15b-5p by using an online database (miRWalk), and the luciferase reporter gene assay was performed to verify it. Co-immunoprecipitation (CO-IP) was used to verify the direct binding between USP9X and PIK3CA and the role of USP9X and its small molecule inhibitor WP1130 in the deubiquitination of PIK3CA. C57 mice were randomly divided into Control group, OVA group, OVA combined with NC group and miR-15b-5p agomir group, with 10 mice in each group. BEAS-2B cells were induced with interleukin 13 (IL-13) and treated with miR-15b-5p mimic. HE, Masson, PAS, immunohistochemistry, immunofluorescence staining, flow cytometry, Western blot and quantitative real-time PCR(qRT-PCR) were performed. Results It was found that the administration of miR-15b-5p agomir and mimic could reduce peribronchial inflammatory cells and improve airway inflammation, and miR-15b-5p could target negative regulation of USP9X. USP9X could directly bind to PIK3CA and regulate PIK3CA level in a proteasome-dependent manner, and USP9X could deubiquitinate K29-linked PIK3CA protein. Down-regulation of USP9X could increase PIK3CA ubiquitination level. WP1130, a small molecule inhibitor of USP9X, has the same effect as knockdown of USP9X, both of which could increase the ubiquitination level of PIK3CA and reduce the protein level of PIK3CA. Conclusion The miR-15b-5p/USP9X/PIK3CA/AKT1 signaling pathway may provide potential therapeutic targets for asthma.
Animals
;
MicroRNAs/metabolism*
;
Asthma/pathology*
;
Class I Phosphatidylinositol 3-Kinases/genetics*
;
Ubiquitin Thiolesterase/metabolism*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Mice
;
Signal Transduction
;
Mice, Inbred C57BL
;
Humans
;
Inflammation/genetics*
;
Cell Line
;
Female
;
Male

Result Analysis
Print
Save
E-mail