1.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Chemical consitituents and hypoglycemic activity of Qinhuai No. 1 Rehmannia glutinosa
Meng YANG ; Zhi-you HAO ; Xiao-lan WANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Shi-qi ZHOU ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2025;60(1):205-210
Eight compounds were isolated and purified from the ethyl acetate part of 70% acetone extract of
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.Failures and successes learned from 160 years of echinococcosis control and countermeasures in China
Chuan-Chuan WU ; Zhuang-Zhi ZHANG ; Jun LI ; Wen-Jing QI ; Jian-Ping CAO ; Can-Jun ZHENG ; Wen-Bao ZHANG
Chinese Journal of Zoonoses 2024;40(5):464-470
The transmission cycle of echinococcosis was established in 1853.More than 160 years have elapsed since Iceland initiated control measures to break the transmission cycle of echinococcosis in 1863.Control plans have been implemented in more than a dozen countries/territories,and lessons have been learned from failures as well as successes.In this review,we fo-cus on the failure experiences,which have also promoted successes in the control of cystic echinococcosis(caused by the para-site Echinococcus granulosus)in regions including Iceland,New Zealand,Uruguay,Wales(England),Turkana(Kenya),and Sardinia(Italy).The causes of the failures were analyzed,and the effects of health education,dog deworming,and con-trol measures for infected animal slaughter on echinococcosis control are comprehensively summarized.However,no suc-cessful experience has been reported in the control of alveolar echinococcosis(caused by the parasite Echinococcus multilocu-laris).On the basis of the biological characteristics of E.mul-tilocularis parasitization in dogs for a duration of 30 days and larvae parasitization in rodents,the fundamental measure for controlling alveolar echinococcosis is administration of monthly deworming treatments to dogs in high prevalence areas.
6.The first female case of human monkeypox in Yunnan Province
Yang ZHOU ; De-Li QI ; Zheng-Ji CHEN ; Zhi-Peng MAO ; Min DAI ; Yu-Dong GAO ; Si-Yi LUO ; Shao-Hua PAN ; Hong-Hai SU
Chinese Journal of Zoonoses 2024;40(6):599-603
This is the first reported case of a female with monkeypox infection in Kunming City,Yunnan Province.An epi-demiological investigation was conducted to provide a scientific basis for the prevention and control of monkeypox epidemics in China,especially for early detection in females in accordance with the"Monkeypox prevention and control program(2023 ver-sion)".Diagnosis was performed as described in the"Monkeypox Diagnosis and Treatment Guidelines(2022 version)".Speci-mens were collected for laboratory testing.The epidemiological investigation determined that the female patient had sexual in-tercourse with her newly married husband once before disease onset and the husband hid his history of male homosexual sex.The laboratory test results of the woman and her husband were positive for the nucleic acid of the monkeypox virus.Both had typical clinical symptoms,including rash.The epidemiological investigation,clinical symptoms,laboratory test results,and previous epidemic data of monkeypox in Yunnan province confirmed the woman as the first female infected with monkeypox in Yunnan Province and her husband was the presumed source of infection.
7.Protective Effects of Astrocyte-derived Exosomes on Mitochondrial Functional Damage after Oxygen-glucose Deprivation/Reoxygenation
Xiao GAO ; Zheng-Wei WANG ; Na CAI ; Zhi TANG ; Chang-Xue WU ; Xiao-Lan QI ; Zhi-Zhong GUAN ; Yan XIAO
Chinese Journal of Biochemistry and Molecular Biology 2024;40(6):827-837
Exosomes can ameliorate neuronal cell injury induced by hypoxia-ischemia,but the relation-ship between astrocyte-derived exosomes(As-exo)and mitochondrial function,mitochondrial associated ER membrane(MAM)function and whether mitochondrial autophagy is relevant is currently unclear.The aim of this study was to investigate the role of astrocyte-derived exosomes in the regulation of mito-chondrial function,MAM and mitochondrial autophagy in PC 12 cells after oxygen and glucose depriva-tion/reoxygenation(OGD/R).Exosomes were extracted from the supernatant of the astrocyte culture me-dium by ultracentrifugation.Using the live cell imaging system,we observed that fluorescently labeled exosomes could show obvious enrichment in PC 12 cells at 24 h.Meanwhile,co-localization of exosomes with mitochondria could be observed under the laser confocal scanning microscope;mitochondrial pres-sure changes were detected using the Seahorse cellular energy metabolism fractionation instrument.The result showed that basal respiration in the OGD/R group,compared with that in the control group,proton leakage,maximal respiration and ATP-related respiration were significantly reduced(P<0.05 or P<0.01),and all four indexes were elevated and statistically significant in the OGD/R+exo group compared with the control group(P<0.05 or P<0.01).The results of the co-localization of the mitochondria and ER showed that the structure of the MAM was harmed by oxygen-sugar deprivation and then reoxygen-ation,and the structure of As-exo and the mitochondria appeared to have a distance-reduced polymeriza-tion phenomenon,while the mitochondria and ER co-localized.The co-localization results of mitochondri-a and ER showed that the structure of MAM was damaged by oxygen deprivation and reoxygenation,and the aggregation phenomenon of MAM was weakened by the treatment of As-exo;the flow-through results showed that As-exo could restore the decrease of the mitochondrial membrane potential and the elevation of the ROS by oxygen deprivation to a certain degree.Western blotting showed that As-exo could signifi-cantly inhibit the mitochondrial autophagy-associated tension protein homologue induced hypothetical ki-nase 1(PTEN induced kinase 1(PINK1)and Parkin protein(parkin RBR E3 ubiquitin protein ligase(Parkin))were elevated,and the addition of As-exo decreased LC3 Ⅱ/LC3 Ⅰ protein expression,ele-vated P62 protein expression,and reduced OGD/R-induced mitochondrial autophagy.The results showed that OGD/R treatment can cause mitochondrial dysfunction,MAM structural changes and increased mito-chondrial autophagy in PC12 cells,and As-exo treatment can improve mitochondrial function,attenuate the formation of MAM,and reduce mitochondrial autophagy in PC 12 cells,which can have the potential of preventing the reperfusion injury in ischemic stroke.
8.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
9.Causal association between depression and stress urinary incontinence:A two-sample bidirectional Mendelian randomization study
Cheng-Xiao JIANG ; Wei-Qi YIN ; Jing-Jing XU ; Ying-Jiao SHI ; Li WANG ; Zhi-Bo ZHENG ; Rui SU ; Qin-Bo HU ; Jun-Hai QIAN ; Shu-Ben SUN
National Journal of Andrology 2024;30(3):217-223
Objective:To investigate the causal correlation between depression and stress urinary incontinence(SUI)using Mendelian randomization(MR)analysis.Methods:We searched the FinnGen Consortium database for genome-wide association studies(GWAS)on depression and obtained 23 424 case samples and 192 220 control samples,with the GWAS data on SUI provided by the UK Biobank,including 4 340 case samples and 458 670 control samples.We investigated the correlation between depression and SUI based on the depression data collected from the Psychiatric Genomics Consortium(PGC).We employed inverse-variance weighting as the main method for the MR study,and performed sensitivity analysis to verify the accuracy and stability of the findings.Results:Analysis of the data from the UK Biobank and FinnGen Consortium showed that depression was significantly correlated with an increased risk of SUI(P=0.005),but not SUI with the risk of depression(P=0.927).And analysis of the PGC data verified the correlation of depression with the increased risk of SUI(P=0.043).Conclusion:Depression is associated with an increased risk of SUI,while SUI does not increase the risk of depression.
10.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.

Result Analysis
Print
Save
E-mail