1.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
2.Role of Naoan capsules in treatment of ischemic stroke by network pharmacology combined with GEO database and molecular docking
Shu-Xian YANG ; A-Ning SUN ; Bin ZHU ; Wei-Zhong SHI ; Zhi-Gang ZHAO
The Chinese Journal of Clinical Pharmacology 2024;40(3):435-439
Objective To predict and verify the mechanism of Naoan capsules(NAC)in treatment of ischemic stroke(IS)by network pharmacology,Gene Expression Omnibus(GEO)database,and molecular docking technology.Methods The active components in NAC were collected using the Traditional Chinese Medicine System Pharmacological Analysis Platform,and the disease-related differential genes were screened using GEO database.After screening and obtaining the common targets of the two,the compound disease network was constructed by Cytoscape 3.8.2 software.At the same time,protein-protein interaction networks were created to identify candidate targets for NAC treatment of IS,and gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses were performed.Finally,core targets were verified by molecular docking technology.Results A total of 56 candidate compounds and 18 544 disease-related differential genes were screened.Further,quercetin,kaempferol,luteolin and baicalein were found to be the key active compounds of NAC in the treatment of IS through the compound disease network.In the search of PPI network core,eight key targets for NAC treatment of IS were screened,including mitogen-activated protein kinase 1(MAPK1),B-cell lymphoma factor 2(Bcl-2),cysteinylaspartate specific protease 3(CASP3),etc.In addition,the key pathways of NAC treatment of IS are mainly concentrated in lipid and atherosclerosis,advanced glycation end products and receptor for advanced glycation end products(AGE-RAGE),tumor necrosis factor(TNF),interleukin17(IL-17),C-type lectin receptor,apoptosis,hypoxia-inducing factor-1(HIF-1),MAPK and other signaling pathways.Finally,the molecular docking results showed that the key active compounds(quercetin,kaempferol,luteolin and baicalein)had good binding force with the 8 key targets,which initially verified the results of network pharmacology.Conclusion NAC plays a role in the treatment of IS through multi-component,multi-target and multi-pathway.
3.Three new sesquiterpenoids from the Alpiniae oxyphyllae Fructus
Bo-tao LU ; Yue-tong ZHU ; Xiao-ning LIU ; Hui-ying NIU ; Meng-yu ZHANG ; Wei-sheng FENG ; Yan-zhi WANG
Acta Pharmaceutica Sinica 2024;59(4):997-1001
The
4.Multimodal image fusion-assisted endoscopic evacuation of spontaneous intracerebral hemorrhage
Chao ZHANG ; Juan LI ; Ping-Li WANG ; Hua-Yun CHEN ; Yu-Hang ZHAO ; Ning WANG ; Zhi-Tao ZHANG ; Yan-Wei DANG ; Hong-Quan WANG ; Jun WANG ; Chu-Hua FU
Chinese Journal of Traumatology 2024;27(6):340-347
Purpose::Although traditional craniotomy (TC) surgery has failed to show benefits for the functional outcome of intracerebral hemorrhage (ICH). However, a minimally invasive hematoma removal plan to avoid white matter fiber damage may be a safer and more feasible surgical approach, which may improve the prognosis of ICH. We conducted a historical cohort study on the use of multimodal image fusion-assisted neuroendoscopic surgery (MINS) for the treatment of ICH, and compared its safety and effectiveness with traditional methods.Methods::This is a historical cohort study involving 241 patients with cerebral hemorrhage. Divided into MINS group and TC group based on surgical methods. Multimodal images (CT skull, CT angiography, and white matter fiber of MRI diffusion-tensor imaging) were fused into 3 dimensional images for preoperative planning and intraoperative guidance of endoscopic hematoma removal in the MINS group. Clinical features, operative efficiency, perioperative complications, and prognoses between 2 groups were compared. Normally distributed data were analyzed using t-test of 2 independent samples, Nonnormally distributed data were compared using the Kruskal-Wallis test. Meanwhile categorical data were analyzed via the Chi-square test or Fisher’s exact test. All statistical tests were two-sided, and p < 0.05 was considered statistically significant. Results::A total of 42 patients with ICH were enrolled, who underwent TC surgery or MINS. Patients who underwent MINS had shorter operative time ( p < 0.001), less blood loss ( p < 0.001), better hematoma evacuation ( p =0.003), and a shorter stay in the intensive care unit ( p =0.002) than patients who underwent TC. Based on clinical characteristics and analysis of perioperative complications, there is no significant difference between the 2 surgical methods. Modified Rankin scale scores at 180 days were better in the MINS than in the TC group ( p =0.014). Conclusions::Compared with TC for the treatment of ICH, MINS is safer and more efficient in cleaning ICH, which improved the prognosis of the patients. In the future, a larger sample size clinical trial will be needed to evaluate its efficacy.
5.Migraineur patent foramen ovale risk prediction model for female migraine patient streaming and clinical decision-making
Xiao-Chun ZHANG ; Jia-Ning FAN ; Li ZHU ; Feng ZHANG ; Da-Wei LIN ; Wan-Ling WANG ; Wen-Zhi PAN ; Da-Xin ZHOU ; Jun-Bo GE
Fudan University Journal of Medical Sciences 2024;51(4):505-514
Objective To investigate the clinical characteristics of female migraine patients with patent foramen ovale(PFO)and design a risk prediction model for PFO in female migraine patients(migraineur patients PFO risk prediction model,MPRPM).Methods Female migraine patients who visited Zhongshan Hospital,Fudan University from Jun 1,2019 to Dec 31,2022 were included.Preoperative information and follow-up results after discontinuation of medication were collected.Patients were divided into PFO-positive and PFO-negative groups based on transesophageal echocardiography results.A multivariate Logistic regression model and a random forest model were constructed,and the random forest model was validated multidimensionally.Key features were selected based on the mean decrease accuracy(MDA)to construct MPRPM.Results A total of 305 female patients were included in the study,with 204 patients in the PFO-positive group and 101 patients in the PFO-negative group.Multivariate Logistic regression analysis showed that age at migraine onset,attack frequency,severe impact on life during attacks,exercise-related headaches,menstruation-induced headaches,aura migraines,and a history of cryptogenic stroke were predictive factors for PFO positivity.The random forest model effectively predicted the incidence of PFO in female migraine patients,with an AUC of 0.895(95%CI:0.847-0.943).MPRPM demonstrated a sensitivity of 71.6%and specificity of 91.1%(AUC:0.862,95%CI:0.818-0.906,P<0.001).The optimal cut-off value was 2.5 points.Patients correctly classified by the model showed a higher rate of symptom improvement compared to incorrectly classified patients(94.3%vs.82.0%,P=0.023).Conclusion We identified predictive factors for PFO in migraine patients.MPRPM can provide guidance in the diagnostic process and therapeutic decision-making for female migraine patients,assist in patient triage,and reduce the healthcare burden.
6.Two new terpene glycosides from the Alpiniae Oxyphyllae Fructus
Yue-tong ZHU ; Hao CHEN ; Xiao-ning LIU ; Kai-zhi LI ; Shuang-jing LIU ; Wei-sheng FENG ; Yong-xian CHENG ; Yan-zhi WANG
Acta Pharmaceutica Sinica 2023;58(5):1283-1287
Two undescribed terpene glycosides and two compounds were isolated from the
7.Expression and Clinical Significance of Exosome Derived MiR-181b-5p in Children with Acute Lymphoblastic Leukemia.
Yi HONG ; Kang-Kang LIU ; Ning-Ling WANG ; Zhi-Wei XIE ; Jin-Hua CHU
Journal of Experimental Hematology 2023;31(3):643-648
OBJECTIVE:
To explore the expression level of exosome derived miR-181b-5p in different disease stages of children with acute lymphoblastic leukemia and its relationship with clinical characteristics.
METHODS:
Bone marrow plasma samples of 86 children with ALL were collected. Exosomes were extracted by exosome extraction kit, and RNA in exosomes was extracted by TRIzol method. The levels of miR-181b-5p in the blood plasma exosomes of the patients in the newly diagnosed group, relapse group, remission group and control group were detected by qRT- PCR. The difference of miR-181b-5p expression level in each group was compared and analyzed, and the relationship between miR-181b-5p expression level and clinical characteristics was analyzed.
RESULTS:
The expression level of exosomal miR-181b-5p in the newly diagnosed group and the relapsed group was significantly lower than that in the remission group and the control group (P< 0.05). The expression level of exosomal miR-181b-5p in T-ALL children was higher than that in B-ALL children (P<0.05). The expression level of plasma exosomal miR-181b-5p in male children was higher than that in female children (P<0.01).
CONCLUSION
Exosome derived miR-181b-5p changes dynamically in the course of ALL children, and can be used as a marker miRNA to monitor disease status. Exosomes can transmit information in the tumor microenvironment and serve as a potential carrier for biomolecular targeted therapy.
Humans
;
Male
;
Female
;
Child
;
Exosomes/metabolism*
;
Clinical Relevance
;
MicroRNAs/genetics*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism*
;
Tumor Microenvironment
8.Trichostatin C attenuates TNFα -induced inflammation in endothelial cells by up-regulating Krüppel-like factor 2
Li-juan LEI ; Ming-hua CHEN ; Ying-hong LI ; Xin-hai JIANG ; Wei-zhi WANG ; Li-ping ZHAO ; Chen-yin WANG ; Yu-chuan CHEN ; Yu-yan ZHANG ; Ye-xiang WU ; Shun-wang LI ; Jiang-xue HAN ; Yi-ning LI ; Ren SHENG ; Yu-hao ZHANG ; Jing ZHANG ; Li-yan YU ; Shu-yi SI ; Yan-ni XU
Acta Pharmaceutica Sinica 2023;58(8):2375-2383
Krüppel-like transcription factor 2 (KLF2) plays a key regulatory role in endothelial inflammation, thrombosis, angiogenesis and macrophage inflammation and polarization, and up-regulation of KLF2 expression has the potential to prevent and treatment atherosclerosis. In this study, trichostatin C (TSC) was obtained from the secondary metabolites of rice fermentation of
9.Quality evaluation of Galli Gigerii Endothelium Corneum based on HPLC fingerprints and content determination of nucleosides.
Jia FAN ; Xiao-Qian LIU ; Chen-Xiao-Ning MENG ; Sen JIAO ; Wei-Hong FENG ; Li-Hua YAN ; Zhi-Min WANG
China Journal of Chinese Materia Medica 2023;48(1):114-125
Galli Gigerii Endothelium Corneum(GGEC), the dried gizzard membrane of Gallus gallus domesticus is a Chinese medicinal material commonly used for digestion. However, due to the particularity of texture and composition, its active ingre-dients have not been clarified so far, and there is also a lack of quality evaluation indicators. In this study, UPLC-Q-TOF-MS was used to analyze the chemical components from the water extract of GGEC, and ten nucleosides were identified for the first time. HPLC fingerprints of the water extracts of GGEC were established and the content of seven nucleosides was determined. The fingerprint similarities of 40 batches of GGEC samples ranged from 0.765 to 0.959, indicating that there were great differences among the GGEC products processed with different methods. In addition, SPSS 22.0 and SIMCA 14.1 were used for hierarchical cluster analysis(HCA) and principal component analysis(PCA) on the 19 common peaks of the HPLC fingerprints of GGEC, and the 40 batches of samples were divided into three categories: raw GGEC, fried GGEC and vinegar-processed GGEC. Eight differential components in GGEC were marked by orthogonal partial least squares discrimination analysis(OPLS-DA), two of which were adenine and thymine. The results of content determination showed that the total content of the seven nucleosides in raw GGEC, fried GGEC and vinegar-processed GGEC were 182.5-416.8, 205.3-368.7, and 194.2-283.0 μg·g~(-1), respectively. There were significant differences in the content of hypoxanthine, thymine and thymidine among the GGEC products processed with different methods(P<0.05), which were graded in the order of fried GGEC>vinegar-processed GGEC>raw GGEC. This suggested that the content of hypoxanthine, thymine and thymidine tended to increase during the frying process, and the variation range might be related to the degree of heat exposure. The established methods in this study were simple and reproducible, and could be used for qualitative and quantitative analysis of GGEC and its processed pro-ducts. This study also provided reference for the establishment of quality standards of GGEC with chemical components as control index.
Nucleosides
;
Drugs, Chinese Herbal/chemistry*
;
Chromatography, High Pressure Liquid
;
Acetic Acid
;
Thymine
;
Thymidine
;
Water
;
Hypoxanthines
10.Effect of Morus alba extract sanggenon C on growth and proliferation of glioblastoma cells.
Wen-Han TANG ; Zhi-Ning ZHANG ; Hua-Rui CAI ; Wei SUN ; He YANG ; Er-Hu ZHAO ; Hong-Juan CUI
China Journal of Chinese Materia Medica 2023;48(1):211-219
Glioblastoma is the most common primary cranial malignancy, and chemotherapy remains an important tool for its treatment. Sanggenon C(San C), a class of natural flavonoids extracted from Morus plants, is a potential antitumor herbal monomer. In this study, the effect of San C on the growth and proliferation of glioblastoma cells was examined by methyl thiazolyl tetrazolium(MTT) assay and 5-bromodeoxyuridinc(BrdU) labeling assay. The effect of San C on the tumor cell cycle was examined by flow cytometry, and the effect of San C on clone formation and self-renewal ability of tumor cells was examined by soft agar assay. Western blot and bioinformatics analysis were used to investigate the mechanism of the antitumor activity of San C. In the presence of San C, the MTT assay showed that San C significantly inhibited the growth and proliferation of tumor cells in a dose and time-dependent manner. BrdU labeling assay showed that San C significantly attenuated the DNA replication activity in the nucleus of tumor cells. Flow cytometry confirmed that San C blocked the cell cycle of tumor cells in G_0/G_1 phase. The soft agar clone formation assay revealed that San C significantly attenuated the clone formation and self-renewal ability of tumor cells. The gene set enrichment analysis(GSEA) implied that San C inhibited the tumor cell division cycle by affecting the myelocytomatosis viral oncogene(MYC) signaling pathway. Western blot assay revealed that San C inhibited the expression of cyclin through the regulation of the MYC signaling pathway by lysine demethylase 4B(KDM4B), which ultimately inhibited the growth and proliferation of glioblastoma cells and self-renewal. In conclusion, San C exhibits the potential antitumor activity by targeting the KDM4B-MYC axis to inhibit glioblastoma cell growth, proliferation, and self-renewal.
Humans
;
Glioblastoma/genetics*
;
Bromodeoxyuridine/therapeutic use*
;
Signal Transduction
;
Proto-Oncogene Proteins c-myc/metabolism*
;
Agar
;
Cell Proliferation
;
Cell Line, Tumor
;
Apoptosis
;
Jumonji Domain-Containing Histone Demethylases/metabolism*

Result Analysis
Print
Save
E-mail