1.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.
2.Interaction between neuron-glial cell gap junction and neural circuit
Hong-Bin WANG ; Jiao YAO ; Hui-Qin WANG ; Zhi-Feng TIAN ; Qi-Di AI ; Mei-Yu LIN ; Yan-Tao YANG ; Song-Wei YANG ; Nai-Hong CHEN
Chinese Pharmacological Bulletin 2024;40(7):1210-1214
Gap junction(GJ),also known as gap junction,is widely found between neurons and glial cells,and can connect neighboring cells and mediate the transmission of electrical sig-nals between neighboring cells.The GJ channel,which exists between neurons and mediates intercellular electrical signaling,is also known as an electrical synapse.Connexins(Cxs)are the molecular basis of GJ,and are expressed to different degrees in different neurons and glial cells.The presence of GJ mediates different functions among neurons and glial cells,which further influences the establishment of various mature neural circuits,re-flecting the importance of GJ in the maintenance of neural cir-cuits.This review summarizes the relationship between GJ and neural circuits in relation to the effects of GJ and different Cxs on neurons and glial cells,providing new research ideas for the treatment of neuropsychiatric disorders.
3.Clinical Analysis of Mitoxantrone Liposome in the Treatment of Children with High-Risk Acute Myeloid Leukemia
Yu-Qing JIAO ; Hao XIONG ; Zhi CHEN ; Li YANG ; Fang TAO ; Ming SUN ; Shan-Shan QI ; Wen-Jie LU ; Zhuo WANG ; Yu DU ; Lin-Lin LUO
Journal of Experimental Hematology 2024;32(2):365-369
Objective:To investigate the safety and efficacy of mitoxantrone liposome in the treatment of children with high-risk acute myeloid leukemia(AML).Methods:The children with high-risk AML who received the mitoxantrone liposome regimen at Wuhan Children's Hospital from January 2022 to February 2023 were collected as the observation group,and the children with high-risk AML who received idarubicin regimen were enrolled as controls,and their clinical data were analyzed.Time to bone marrow recovery,the complete remission rate of bone marrow cytology,the clearance rate of minimal residual disease,and treatment-related adverse reactions were compared between the two groups.Results:The patients treated with mitoxantrone liposome showed shorter time to recovery of leukocytes(17 vs 21 day),granulocytes(18 vs 24 day),platelets(17 vs 24 day),and hemoglobin(20 vs 26 day)compared with those treated with idarubicin,there were statistical differences(P<0.05).The effective rate and MRD turning negative rate in the observation group were 90.9%and 72.7%,respectively,while those in the control group were 94.1%and 76.4%,with no statistical difference(P>0.05).The overall response rate of the two groups of patients was similar.Conclusion:The efficacy of mitoxantrone liposome is not inferior to that of idarubicin in children with high-risk AML,but mitoxantrone liposome allows a significantly shorter duration of bone marrow suppression and the safety is better.
4.Efficacy and Safety of Ixazomib Combined with Thalidomide and Dexamethasone in Treatment of Multiple Myeloma
Xiang-Mei YAO ; Zhi-Xiang LU ; Jian-Hua RAO ; Xiao-Li GAO ; Qi WANG ; Hai-Tao HE
Journal of Experimental Hematology 2024;32(5):1450-1454
Objective:To investigate the efficacy and safety of ixazomib combined with thalidomide and dexamethasone in the treatment of multiple myeloma(MM).Methods:The clinical data of 60 MM patients admitted to our center from January 2019 to June 2022 were analyzed retrospectively,including 43 newly diagnosed patients and 17 patients with recurrence and progression.All patients were treated with ixazomib combined with thalidomide and dexamethasone,and completed 2 to 7 treatment cycles.Results:The overall response rate(ORR)of all patients was 98.3%.Among them,53 patients completed 4 treatment cycles,and the ORR was 86.8%.Seventeen patients completed the whole treatment cycle,with curative effect reaching 88.2%achieving very good partial response and above,and 52.9%achieving complete response and above.Albumin and β2-microglobulin of all patients had been improved rapidly after treatment.The deadline was August 31,2022.The median follow-up time was 14(3-24)months,and overall survival(OS)rate was 86.67%.The OS rate of patients with recurrence and progression was significantly lower than that of newly diagnosed patients(P<0.05).The most common adverse reaction of hematology was lymphopenia(53.3%),followed by anemia(33.3%).The most common non-hematological adverse reaction was fatigue(68.33%),followed by peripheral neuropathy(31.67%).Conclusion:Ixazomib combined with thalidomide and dexamethasone is effective in the treatment of MM,with good short-term efficacy,survival and safety.However,its long-term efficacy needs further observation.
5.Clinical Analysis of Reversible Posterior Encephalopathy Syndrome after Allogeneic Hematopoietic Stem Cell Transplantation in Children
Zuo-Feng LI ; Hao XIONG ; Zhi CHEN ; Li YANG ; Ming SUN ; Wen-Jie LU ; Shan-Shan QI ; Fang TAO ; Lin-Lin LUO ; Yu-Qing JIAO
Journal of Experimental Hematology 2024;32(5):1560-1565
Objective:To summarize the clinical features of reversible posterior encephalopathy syndrome(PRES)after allogeneic hematopoietic stem cell transplantation(allo-HSCT)in children.Methods:The clinical data of six children who developed PRES after undergoing allo-HSCT in the Department of Hematology of Wuhan Children's Hospital from June 2016 to December 2022 were retrospectively analyzed,and their clinical characteristics,imaging examination,laboratory examination,and treatment regression were summarized.Results:Among 281 children underwent allo-HSCT,6 cases(2.14%)developed PRES,with a median age of 5.1(1.5-9.7)years old.4 cases underwent related haploidentical donor transplantation,and 2 cases underwent sibling allografting and unrelated donor allografting donor transplantation,respectively.All six children had an acute onset of illness,with clinical manifestations of nausea and vomiting,seizures,psychiatric disorders,visual disturbances.The five cases elevated blood pressure.All children with PRES were treated with oral immunosuppressive drugs during seizures,and 3 cases were combined with different degrees of graft-versus-host disease.Most of the children showed effective improvement in clinical symptoms and imaging after adjusting/discontinuing suspected medications(cyclosporine,etc.)and symptomatic supportive treatments(oral antihypertensive,diazepam for antispasmodic,mannitol to lower cranial blood pressure),and one of them relapsed more than 8 months after the first seizure.Conclusion:PRES is rare after hematopoietic stem cell transplantation in children,and its onset may be related to hypertension,cytotoxic drugs,graft-versus-host disease,etc.Most of them can be recovered after active treatment,but not completely reversible,and the prognosis of those who combined with TMA is poor.
6.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
7.Review of conductivity reconstruction methods based on magneto-acoustic coupling effects
Yu-Hui NIE ; Zhi-Peng LIU ; Tao YIN ; Shun-Qi ZHANG
Chinese Medical Equipment Journal 2024;45(7):94-104
The theoretical foundations of the forward and inverse problems of two conductivity imaging methods based on magneto-acoustic coupling effects,including magneto-acoustic tomography(MAT)and magneto-acousto-electrical tomogra-phy(MAET),were introduced.The research progress of the conductivity reconstruction methods with different imaging strate-gies was reviewed.The problems of the conductivity reconstruction methods based on magnetoacoustic coupling effects were analyzed in terms of acoustic source model construction,reconstruction algorithm and imaging speed,and the future develop-ment directions were pointed out.[Chinese Medical Equipment Journal,2024,45(7):94-104]
8.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
9.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
10.A new iridoid from Eucommia ulmoides
Shi-qi ZHOU ; Zhi-you HAO ; Meng YANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Bo-wen ZHANG ; Si-qi TAO ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2024;59(7):2062-2068
Eleven compounds were isolated from

Result Analysis
Print
Save
E-mail