1.One-year seedling cultivation technology and seed germination-promoting mechanism by warm water soaking of Polygonatum kingianum var. grandifolium.
Ke FU ; Jian-Qing ZHOU ; Zhi-Wei FAN ; Mei-Sen YANG ; Ya-Qun CHENG ; Yan ZHU ; Yan SHI ; Jin-Ping SI ; Dong-Hong CHEN
China Journal of Chinese Materia Medica 2025;50(4):1022-1030
Polygonati Rhizoma demonstrates significant potential for addressing both chronic and hidden hunger. The supply of high-quality seedlings is a primary factor influencing the development of the Polygonati Rhizoma industry. Warm water soaking is often used in agriculture to promote the rapid germination of seeds, while its application and molecular mechanism in Polygonati Rhizoma have not been reported. To rapidly obtain high-quality seedlings, this study treated Polygonatum kingianum var. grandifolium seeds with sand storage at low temperatures, warm water soaking, and cultivation temperature gradients. The results showed that the culture at 25 ℃ or sand storage at 4 ℃ for 2 months rapidly broke the seed dormancy of P. kingianum var. grandifolium, while the culture at 20 ℃ or sand storage at 4 ℃ for 1 month failed to break the seed dormancy. Soaking seeds in 60 ℃ warm water further increased the germination rate, germination potential, and germination index. Specifically, the seeds soaked at 60 ℃ and cultured at 25 ℃ without sand storage treatment(Aa25) achieved a germination rate of 78. 67%±1. 53% on day 42 and 83. 40%±4. 63% on day 77. The seeds pretreated with sand storage at 4 ℃ for 2 months, soaked in 60 ℃ water, and then cultured at 25 ℃ achieved a germination rate comparable to that of Aa25 on day 77. Transcriptomic analysis indicated that warm water soaking might promote germination by triggering reactive oxygen species( ROS), inducing the expression of heat shock factors( HSFs) and heat shock proteins( HSPs), which accelerated DNA replication, transcript maturation, translation, and processing, thereby facilitating the accumulation and turnover of genetic materials. According to the results of indoor controlled experiments and field practices, maintaining a germination and seedling cultivation environment at approximately 25 ℃ was crucial for the one-year seedling cultivation of P. kingianum var. grandifolium.
Germination
;
Seedlings/genetics*
;
Water/metabolism*
;
Seeds/metabolism*
;
Polygonatum/genetics*
;
Temperature
;
Plant Proteins/genetics*
;
Plant Dormancy
2.Expert consensus on apical microsurgery.
Hanguo WANG ; Xin XU ; Zhuan BIAN ; Jingping LIANG ; Zhi CHEN ; Benxiang HOU ; Lihong QIU ; Wenxia CHEN ; Xi WEI ; Kaijin HU ; Qintao WANG ; Zuhua WANG ; Jiyao LI ; Dingming HUANG ; Xiaoyan WANG ; Zhengwei HUANG ; Liuyan MENG ; Chen ZHANG ; Fangfang XIE ; Di YANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Shuang PAN ; Deqin YANG ; Weidong NIU ; Qi ZHANG ; Shuli DENG ; Jingzhi MA ; Xiuping MENG ; Jian YANG ; Jiayuan WU ; Yi DU ; Junqi LING ; Lin YUE ; Xuedong ZHOU ; Qing YU
International Journal of Oral Science 2025;17(1):2-2
Apical microsurgery is accurate and minimally invasive, produces few complications, and has a success rate of more than 90%. However, due to the lack of awareness and understanding of apical microsurgery by dental general practitioners and even endodontists, many clinical problems remain to be overcome. The consensus has gathered well-known domestic experts to hold a series of special discussions and reached the consensus. This document specifies the indications, contraindications, preoperative preparations, operational procedures, complication prevention measures, and efficacy evaluation of apical microsurgery and is applicable to dentists who perform apical microsurgery after systematic training.
Microsurgery/standards*
;
Humans
;
Apicoectomy
;
Contraindications, Procedure
;
Tooth Apex/diagnostic imaging*
;
Postoperative Complications/prevention & control*
;
Consensus
;
Treatment Outcome
3.Expert consensus on pulpotomy in the management of mature permanent teeth with pulpitis.
Lu ZHANG ; Chen LIN ; Zhuo CHEN ; Lin YUE ; Qing YU ; Benxiang HOU ; Junqi LING ; Jingping LIANG ; Xi WEI ; Wenxia CHEN ; Lihong QIU ; Jiyao LI ; Yumei NIU ; Zhengmei LIN ; Lei CHENG ; Wenxi HE ; Xiaoyan WANG ; Dingming HUANG ; Zhengwei HUANG ; Weidong NIU ; Qi ZHANG ; Chen ZHANG ; Deqin YANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Jingzhi MA ; Shuli DENG ; Xiaoli XIE ; Xiuping MENG ; Jian YANG ; Xuedong ZHOU ; Zhi CHEN
International Journal of Oral Science 2025;17(1):4-4
Pulpotomy, which belongs to vital pulp therapy, has become a strategy for managing pulpitis in recent decades. This minimally invasive treatment reflects the recognition of preserving healthy dental pulp and optimizing long-term patient-centered outcomes. Pulpotomy is categorized into partial pulpotomy (PP), the removal of a partial segment of the coronal pulp tissue, and full pulpotomy (FP), the removal of whole coronal pulp, which is followed by applying the biomaterials onto the remaining pulp tissue and ultimately restoring the tooth. Procedural decisions for the amount of pulp tissue removal or retention depend on the diagnostic of pulp vitality, the overall treatment plan, the patient's general health status, and pulp inflammation reassessment during operation. This statement represents the consensus of an expert committee convened by the Society of Cariology and Endodontics, Chinese Stomatological Association. It addresses the current evidence to support the application of pulpotomy as a potential alternative to root canal treatment (RCT) on mature permanent teeth with pulpitis from a biological basis, the development of capping biomaterial, and the diagnostic considerations to evidence-based medicine. This expert statement intends to provide a clinical protocol of pulpotomy, which facilitates practitioners in choosing the optimal procedure and increasing their confidence in this rapidly evolving field.
Humans
;
Calcium Compounds/therapeutic use*
;
Consensus
;
Dental Pulp
;
Dentition, Permanent
;
Oxides/therapeutic use*
;
Pulpitis/therapy*
;
Pulpotomy/standards*
4.Expert consensus on intentional tooth replantation.
Zhengmei LIN ; Dingming HUANG ; Shuheng HUANG ; Zhi CHEN ; Qing YU ; Benxiang HOU ; Lihong QIU ; Wenxia CHEN ; Jiyao LI ; Xiaoyan WANG ; Zhengwei HUANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Shuang PAN ; Deqin YANG ; Weidong NIU ; Qi ZHANG ; Shuli DENG ; Jingzhi MA ; Xiuping MENG ; Jian YANG ; Jiayuan WU ; Lan ZHANG ; Jin ZHANG ; Xiaoli XIE ; Jinpu CHU ; Kehua QUE ; Xuejun GE ; Xiaojing HUANG ; Zhe MA ; Lin YUE ; Xuedong ZHOU ; Junqi LING
International Journal of Oral Science 2025;17(1):16-16
Intentional tooth replantation (ITR) is an advanced treatment modality and the procedure of last resort for preserving teeth with inaccessible endodontic or resorptive lesions. ITR is defined as the deliberate extraction of a tooth; evaluation of the root surface, endodontic manipulation, and repair; and placement of the tooth back into its original socket. Case reports, case series, cohort studies, and randomized controlled trials have demonstrated the efficacy of ITR in the retention of natural teeth that are untreatable or difficult to manage with root canal treatment or endodontic microsurgery. However, variations in clinical protocols for ITR exist due to the empirical nature of the original protocols and rapid advancements in the field of oral biology and dental materials. This heterogeneity in protocols may cause confusion among dental practitioners; therefore, guidelines and considerations for ITR should be explicated. This expert consensus discusses the biological foundation of ITR, the available clinical protocols and current status of ITR in treating teeth with refractory apical periodontitis or anatomical aberration, and the main complications of this treatment, aiming to refine the clinical management of ITR in accordance with the progress of basic research and clinical studies; the findings suggest that ITR may become a more consistent evidence-based option in dental treatment.
Humans
;
Tooth Replantation/methods*
;
Consensus
;
Periapical Periodontitis/surgery*
5.Expert consensus on management of instrument separation in root canal therapy.
Yi FAN ; Yuan GAO ; Xiangzhu WANG ; Bing FAN ; Zhi CHEN ; Qing YU ; Ming XUE ; Xiaoyan WANG ; Zhengwei HUANG ; Deqin YANG ; Zhengmei LIN ; Yihuai PAN ; Jin ZHAO ; Jinhua YU ; Zhuo CHEN ; Sijing XIE ; He YUAN ; Kehua QUE ; Shuang PAN ; Xiaojing HUANG ; Jun LUO ; Xiuping MENG ; Jin ZHANG ; Yi DU ; Lei ZHANG ; Hong LI ; Wenxia CHEN ; Jiayuan WU ; Xin XU ; Jing ZOU ; Jiyao LI ; Dingming HUANG ; Lei CHENG ; Tiemei WANG ; Benxiang HOU ; Xuedong ZHOU
International Journal of Oral Science 2025;17(1):46-46
Instrument separation is a critical complication during root canal therapy, impacting treatment success and long-term tooth preservation. The etiology of instrument separation is multifactorial, involving the intricate anatomy of the root canal system, instrument-related factors, and instrumentation techniques. Instrument separation can hinder thorough cleaning, shaping, and obturation of the root canal, posing challenges to successful treatment outcomes. Although retrieval of separated instrument is often feasible, it carries risks including perforation, excessive removal of tooth structure and root fractures. Effective management of separated instruments requires a comprehensive understanding of the contributing factors, meticulous preoperative assessment, and precise evaluation of the retrieval difficulty. The application of appropriate retrieval techniques is essential to minimize complications and optimize clinical outcomes. The current manuscript provides a framework for understanding the causes, risk factors, and clinical management principles of instrument separation. By integrating effective strategies, endodontists can enhance decision-making, improve endodontic treatment success and ensure the preservation of natural dentition.
Humans
;
Root Canal Therapy/adverse effects*
;
Consensus
;
Root Canal Preparation/adverse effects*
6.Application of low-dose ticagrelor after stent-assisted embolization of intracranial aneurysm
Yang-Fang XIANG ; Yu LIU ; Zhi-Ling ZHOU ; Guang-Sen CHENG
Journal of Regional Anatomy and Operative Surgery 2024;33(12):1073-1076
Objective To investigate the application effect of low-dose ticagrelor combined with aspirin in patients with intracranial aneurysm after stent-assisted embolization.Methods The clinical data of patients with unruptured intracranial aneurysm who underwent stent-assisted embolization in our hospital from January 2021 to January 2023 were retrospectively analyzed and divided into the ticagrelor group[aspirin(100 mg,once a day)+low-dose ticagrelor(60 mg,twice a day)]and the clopidogrel group[aspirin(100 mg,once a day)+clopidogrel(75 mg,once a day)]according to the preoperative dual antiplatelet therapy regimen.A total of 158 patients who underwent stent-assisted embolization were included,including 84 patients in the ticagrelor group and 74 patients in the clopidogrel group.The patients were followed up for 3 months after surgery,and the occurrence of ischemic events and hemorrhagic events in the two groups were observed and compared.Results There was no statistically significant difference in the incidence of hemorrhagic events 3 months after surgery(11.9%vs.12.2%)between the ticagrelor group and the clopidogrel group(P>0.05).There was a statistically significant difference in the incidence of ischemic events 3 months after surgery(11.9%vs.25.7%)between the ticagrelor group and theclopidogrel group(P<0.05).Multivariate Cox regression analysis showed that low-dose ticagrelor(HR=0.44,95%CI:0.21 to 0.93,P=0.035)was a protective factor for ischemic events after stent-assisted embolization.Conclusion Compared with clopidogrel,the application of low-dose ticagrelor(60 mg,twice a day)after stent-assisted embolization of intracranial aneurysm can significantly reduce the incidence of postoperative ischemic stroke events,and low-dose ticagrelor combined with aspirin can be used as a dual antiplatelet therapy regimen after stent-assisted embolization of intracranial aneurysm.
7.Establishment and validation of a novel nomogram to predict overall survival after radical nephrectomy.
Long Bin XIONG ; Xiang Peng ZOU ; Kang NING ; Xin LUO ; Yu Lu PENG ; Zhao Hui ZHOU ; Jun WANG ; Zhen LI ; Chun Ping YU ; Pei DONG ; Sheng Jie GUO ; Hui HAN ; Fang Jian ZHOU ; Zhi Ling ZHANG
Chinese Journal of Oncology 2023;45(8):681-689
Objective: To establish a nomogram prognostic model for predicting the 5-, 10-, and 15-year overall survival (OS) of non-metastatic renal cell carcinoma patients managed with radical nephrectomy (RN), compare the modelled results with the results of pure pathologic staging, the Karakiewicz nomogram and the Mayo Clinic Stage, Size, Grade, and Necrosis (SSIGN) score commonly used in foreign countries, and stratify the patients into different prognostic risk subgroups. Methods: A total of 1 246 non-metastatic renal cell carcinoma patients managed with RN in Sun Yat-sen University Cancer Center (SYSUCC) from 1999 to 2020 were retrospectively analyzed. Multivariate Cox regression analysis was used to screen the variables that influence the prognosis for nomogram establishment, and the bootstrap random sampling was used for internal validation. The time-receiver operating characteristic curve (ROC), the calibration curve and the clinical decision curve analysis (DCA) were applied to evaluate the nomogram. The prediction efficacy of the nomogram and that of the pure pathologic staging, the Karakiewicz nomogram and the SSIGN score was compared through the area under the curve (AUC). Finally, patients were stratified into different risk subgroups according to our nomogram scores. Results: A total of 1 246 patients managed with RN were enrolled in this study. Multivariate Cox regression analysis showed that age, smoking history, pathological nuclear grade, sarcomatoid differentiation, tumor necrosis and pathological T and N stages were independent prognostic factors for RN patients (all P<0.05). A nomogram model named SYSUCC based on these factors was built to predict the 5-, 10-, and 15-year survival rate of the participating patients. In the bootstrap random sampling with 1 000 iterations, all these factors occurred for more than 800 times as independent predictors. The Harrell's concordance index (C-index) of SYSUCC was higher compared with pure pathological staging [0.770 (95% CI: 0.716-0.823) vs 0.674 (95% CI: 0.621-0.728)]. The calibration curve showed that the survival rate as predicted by the SYSUCC model simulated the actual rate, while the clinical DCA showed that the SYSUCC nomogram has a benefit in certain probability ranges. In the ROC analysis that included 857 patients with detailed pathological nuclear stages, the nomogram had a larger AUC (5-/10-year AUC: 0.823/0.804) and better discriminating ability than pure pathological staging (5-/10-year AUC: 0.701/0.658), Karakiewicz nomogram (5-/10-year AUC: 0.772/0.734) and SSIGN score (5-/10-year AUC: 0.792/0.750) in predicting the 5-/10-year OS of RN patients (all P<0.05). In addition, the AUC of the SYSUCC nomogram for predicting the 15-year OS (0.820) was larger than that of the SSIGN score (0.709), and there was no statistical difference (P<0.05) between the SYSUCC nomogram, pure pathological staging (0.773) and the Karakiewicz nomogram (0.826). The calibration curve was close to the standard curve, which indicated that the model has good predictive performance. Finally, patients were stratified into low-, intermediate-, and high-risk subgroups (738, 379 and 129, respectively) according to the SYSUCC nomogram scores, among whom patients in intermediate- and high-risk subgroups had a worse OS than patients in the low-risk subgroup (intermediate-risk group vs. low-risk group: HR=4.33, 95% CI: 3.22-5.81, P<0.001; high-risk group vs low-risk group: HR=11.95, 95% CI: 8.29-17.24, P<0.001), and the high-risk subgroup had a worse OS than the intermediate-risk group (HR=2.63, 95% CI: 1.88-3.68, P<0.001). Conclusions: Age, smoking history, pathological nuclear grade, sarcomatoid differentiation, tumor necrosis and pathological stage were independent prognostic factors for non-metastasis renal cell carcinoma patients after RN. The SYSUCC nomogram based on these independent prognostic factors can better predict the 5-, 10-, and 15-year OS than pure pathological staging, the Karakiewicz nomogram and the SSIGN score of patients after RN. In addition, the SYSUCC nomogram has good discrimination, agreement, risk stratification and clinical application potential.
Humans
;
Nomograms
;
Retrospective Studies
;
Carcinoma, Renal Cell/pathology*
;
Prognosis
;
Risk Factors
;
Nephrectomy
;
Kidney Neoplasms/pathology*
;
Necrosis
8.Efficacy and safety evaluation of immunotherapy combined with targeted therapy as second-line treatment in patients with metastatic non-clear cell renal cell carcinoma.
Jun WANG ; Wen Su WEI ; Li Juan JIANG ; Zhi Ling ZHANG ; Sheng Jie GUO ; Hui HAN ; Fang Jian ZHOU ; Pei DONG
Chinese Journal of Oncology 2023;45(8):704-708
Objective: This study aimed to evaluate the efficacy and safety of programmed death-1 (PD-1) inhibitor combined tyrosine kinase inhibitor (TKI) therapy versus TKI monotherapy as the second-line regimen for patients with metastatic non-clear cell renal carcinoma (nccRCC) who failed first-line TKI therapy. Methods: The clinicopathological data of 67 patients with metastatic nccRCC who failed first-line TKI therapy between October 2011 and September 2020 were retrospectively analyzed, including 22 patients who received TKI monotherapy and 45 patients who received TKI plus PD-1 inhibitor as the second-line therapy. The efficacy was assessed according to Response Evaluation Criteria in Solid Tumors version 1.0/1.1 (RECIST 1.0/1.1), the Kaplan-Meier method was used to plot the survival curves, and the Log rank test was used to analyze the differences in the survival between the two groups. Treatment-related adverse events (AEs) after treatment were observed in both groups. Results: The overall objective response rate (ORR) and disease control rate (DCR) were 37.3% (25/67) and 56.7% (38/67), respectively. The overall second-line progression-free survival (PFS) was 7.7 months and Overall Survival (OS) was 25.2 months. The ORR and DCR of patients in the combination therapy group were 48.9% (22/45) and 71.1% (32/45), respectively, which were significantly improved compared with the TKI monotherapy group [13.6% (3/22) and 27.3% (6/22), respectively] (P=0.007 and P=0.001, respectively). The median PFS of 9.2 months for second-line treatment was longer in patients in the combination therapy group than in the TKI monotherapy group (5.2 months, P=0.001), but the median OS was not statistically different between the two groups (28.2 months vs 20.8 months, P=0.068). Common treatment-related AEs included hypertension, diarrhea, fatigue, stomatitis, hand-foot syndrome, and hypothyroidism. The incidence of hypothyroidism was higher in the combination therapy group [40.0% (18/45)] than in the TKI monotherapy group [22.7% (5/22), P=0.044]; the incidence of other treatment-related AEs between the two groups were not statistically significant (all P>0.05). Conclusion: Immune-targeted combination therapy was more effective than TKI monotherapy alone and was well tolerated in the treatment of metastatic nccRCC patients who failed first-line TKIs.
Humans
;
Carcinoma, Renal Cell/drug therapy*
;
Immunotherapy/adverse effects*
;
Kidney Neoplasms/drug therapy*
;
Retrospective Studies
9.Long-term survival analysis of 1 367 patients treated with radical nephrectomy from a single center.
Xiang Peng ZOU ; Kang NING ; Zhi Ling ZHANG ; Ling ZOU ; Long Bin XIONG ; Yu Lu PENG ; Zhao Hui ZHOU ; Hui Ming LIU ; Chun Ping YU ; Pei DONG ; Sheng Jie GUO ; Hui HAN ; Fang Jian ZHOU
Chinese Journal of Oncology 2023;45(11):981-987
Objective: To report the long-term survival of renal cell carcinoma (RCC) patients treated with radical nephrectomy in Sun Yat-sen University Cancer Center. Methods: We retrospectively analyzed the clinical, pathological and follow-up records of 1 367 non-metastatic RCC patients treated with radical nephrectomy from 1999 to 2020 in this center. The primary endpoint of this study was overall survival rate. Survival curves were estimated using the Kaplan-Meier method, and group differences were compared through Log-rank test. Univariate and multivariate Cox analysis were fit to determine the clinical and pathological features associated with overall survival rate. Results: A total of 1 367 patients treated with radical nephrectomy with complete follow-up data were included in the study. The median follow-up time was 52.6 months, and 1 100 patients survived and 267 died, with the median time to overall survival not yet reached. The 5-year and 10-year overall survival rates were 82.8% and 74.9%, respectively. The 5-year and 10-year overall survival rates of Leibovich low-risk patients were 93.3% and 88.2%, respectively; of Leibovich intermediate-risk patients were 82.2% and 72.3%, respectively; and of Leibovich high-risk patients were 50.5% and 30.2%, respectively. There were significant differences in the long-term survival among the three groups (P<0.001). The 10-year overall survival rates for patients with pT1, pT2, pT3 and pT4 RCC were 83.2%, 73.6%, 55.0% and 31.4%, respectively. There were significant differences among pT1, pT2, pT3 and pT4 patients(P<0.001). The 5-year and 10-year overall survival rates of patients with lymph node metastasis were 48.5% and 35.6%, respectively, and those of patients without lymph node metastasis were 85.1% and 77.5%, respectively. There was significant difference in the long-term survival between patients with lymph node metastasis and without lymph node metastasis. The 10-year overall survival rate was 96.2% for nuclear Grade 1, 81.6% for nuclear Grade 2, 60.5% for nuclear Grade 3, and 43.4% for nuclear Grade 4 patients. The difference was statistically significant. There was no significant difference in the long-term survival between patients with localized renal cancer (pT1-2N0M0) who underwent open surgery and minimally invasive surgery (10-year overall survival rate 80.5% vs 85.6%, P=0.160). Multivariate Cox analysis showed that age≥55 years (HR=2.11, 95% CI: 1.50-2.96, P<0.001), T stage(T3+ T4 vs T1a: HR=2.37, 95% CI: 1.26-4.46, P=0.008), local lymph node metastasis (HR=3.04, 95%CI: 1.81-5.09, P<0.001), nuclear grade (G3-G4 vs G1: HR=4.21, 95%CI: 1.51-11.75, P=0.006), tumor necrosis (HR=1.66, 95% CI: 1.17-2.37, P=0.005), sarcomatoid differentiation (HR=2.39, 95% CI: 1.31-4.35, P=0.005) and BMI≥24kg/m(2) (HR=0.56, 95%CI: 0.39-0.80, P=0.001) were independent factors affecting long-term survival after radical nephrectomy. Conclusions: The long-term survival of radical nephrectomy in patients with renal cell carcinoma is satisfactory. Advanced age, higher pathological stage and grade, tumor necrosis and sarcomatoid differentiation were the main adverse factors affecting the prognosis of patients. Higher body mass index was a protective factor for the prognosis of patients.
Humans
;
Middle Aged
;
Carcinoma, Renal Cell/secondary*
;
Lymphatic Metastasis
;
Retrospective Studies
;
Neoplasm Staging
;
Kidney Neoplasms/pathology*
;
Prognosis
;
Nephrectomy
;
Survival Analysis
;
Necrosis/surgery*
;
Survival Rate
10.Establishment and validation of a novel nomogram to predict overall survival after radical nephrectomy.
Long Bin XIONG ; Xiang Peng ZOU ; Kang NING ; Xin LUO ; Yu Lu PENG ; Zhao Hui ZHOU ; Jun WANG ; Zhen LI ; Chun Ping YU ; Pei DONG ; Sheng Jie GUO ; Hui HAN ; Fang Jian ZHOU ; Zhi Ling ZHANG
Chinese Journal of Oncology 2023;45(8):681-689
Objective: To establish a nomogram prognostic model for predicting the 5-, 10-, and 15-year overall survival (OS) of non-metastatic renal cell carcinoma patients managed with radical nephrectomy (RN), compare the modelled results with the results of pure pathologic staging, the Karakiewicz nomogram and the Mayo Clinic Stage, Size, Grade, and Necrosis (SSIGN) score commonly used in foreign countries, and stratify the patients into different prognostic risk subgroups. Methods: A total of 1 246 non-metastatic renal cell carcinoma patients managed with RN in Sun Yat-sen University Cancer Center (SYSUCC) from 1999 to 2020 were retrospectively analyzed. Multivariate Cox regression analysis was used to screen the variables that influence the prognosis for nomogram establishment, and the bootstrap random sampling was used for internal validation. The time-receiver operating characteristic curve (ROC), the calibration curve and the clinical decision curve analysis (DCA) were applied to evaluate the nomogram. The prediction efficacy of the nomogram and that of the pure pathologic staging, the Karakiewicz nomogram and the SSIGN score was compared through the area under the curve (AUC). Finally, patients were stratified into different risk subgroups according to our nomogram scores. Results: A total of 1 246 patients managed with RN were enrolled in this study. Multivariate Cox regression analysis showed that age, smoking history, pathological nuclear grade, sarcomatoid differentiation, tumor necrosis and pathological T and N stages were independent prognostic factors for RN patients (all P<0.05). A nomogram model named SYSUCC based on these factors was built to predict the 5-, 10-, and 15-year survival rate of the participating patients. In the bootstrap random sampling with 1 000 iterations, all these factors occurred for more than 800 times as independent predictors. The Harrell's concordance index (C-index) of SYSUCC was higher compared with pure pathological staging [0.770 (95% CI: 0.716-0.823) vs 0.674 (95% CI: 0.621-0.728)]. The calibration curve showed that the survival rate as predicted by the SYSUCC model simulated the actual rate, while the clinical DCA showed that the SYSUCC nomogram has a benefit in certain probability ranges. In the ROC analysis that included 857 patients with detailed pathological nuclear stages, the nomogram had a larger AUC (5-/10-year AUC: 0.823/0.804) and better discriminating ability than pure pathological staging (5-/10-year AUC: 0.701/0.658), Karakiewicz nomogram (5-/10-year AUC: 0.772/0.734) and SSIGN score (5-/10-year AUC: 0.792/0.750) in predicting the 5-/10-year OS of RN patients (all P<0.05). In addition, the AUC of the SYSUCC nomogram for predicting the 15-year OS (0.820) was larger than that of the SSIGN score (0.709), and there was no statistical difference (P<0.05) between the SYSUCC nomogram, pure pathological staging (0.773) and the Karakiewicz nomogram (0.826). The calibration curve was close to the standard curve, which indicated that the model has good predictive performance. Finally, patients were stratified into low-, intermediate-, and high-risk subgroups (738, 379 and 129, respectively) according to the SYSUCC nomogram scores, among whom patients in intermediate- and high-risk subgroups had a worse OS than patients in the low-risk subgroup (intermediate-risk group vs. low-risk group: HR=4.33, 95% CI: 3.22-5.81, P<0.001; high-risk group vs low-risk group: HR=11.95, 95% CI: 8.29-17.24, P<0.001), and the high-risk subgroup had a worse OS than the intermediate-risk group (HR=2.63, 95% CI: 1.88-3.68, P<0.001). Conclusions: Age, smoking history, pathological nuclear grade, sarcomatoid differentiation, tumor necrosis and pathological stage were independent prognostic factors for non-metastasis renal cell carcinoma patients after RN. The SYSUCC nomogram based on these independent prognostic factors can better predict the 5-, 10-, and 15-year OS than pure pathological staging, the Karakiewicz nomogram and the SSIGN score of patients after RN. In addition, the SYSUCC nomogram has good discrimination, agreement, risk stratification and clinical application potential.
Humans
;
Nomograms
;
Retrospective Studies
;
Carcinoma, Renal Cell/pathology*
;
Prognosis
;
Risk Factors
;
Nephrectomy
;
Kidney Neoplasms/pathology*
;
Necrosis

Result Analysis
Print
Save
E-mail