1.Functional characterization of flavonoid glycosyltransferase AmGT90 in Astragalus membranaceus.
Guo-Qing PENG ; Bing-Yan XU ; Jian-Ping HUANG ; Zhi-Yin YU ; Sheng-Xiong HUANG
China Journal of Chinese Materia Medica 2025;50(6):1534-1543
Astragalus membranaceus(A. membranaceus), a traditional tonic, contains flavonoids as one of its main bioactive components and key indicators for quality standard detection. These compounds predominantly exist in glycosylated forms after glycosylation modification within the plant. The catalytic products of flavonoid glycosyltransferases in A. membranaceus have been reported to be mostly monoglycosides, and only AmUGT28 catalyzes luteolin to form diglycosides. In this study, we cloned a glycosyltransferase gene, AmGT90, from A. membranaceus, with an ORF length of 1 335 bp, encoding 444 amino acids, and the protein had a relative molecular mass of 50.5 kDa. Phylogenetic tree analysis indicated that AmGT90 belongs to the UGT74 family. In vitro enzymatic reaction showed that AmGT90 had broad substrate specificity and could catalyze the glycosylation of various flavonoids, including isoflavones, flavones, flavanones, and chalcones. AmGT90 not only catalyzed the formation of monoglycosides but also diglycosides. In addition, the mechanism of AmGT90 catalyzing the formation of diglycosides from luteolin was preliminarily explored. The experimental results showed that AmGT90 may preferentially recognize C4'-OH of luteolin and then recognize C7-OH to form diglycosides. This study reported a glycosyltransferase from A. membranaceus capable of converting flavonoids into monoglycosides and diglycosides. This finding not only enhances our understanding of the biosynthetic pathways of flavonoid glycosides in A. membranaceus but also introduces a new component for glycoside production through synthetic biology.
Glycosyltransferases/chemistry*
;
Flavonoids/chemistry*
;
Astragalus propinquus/classification*
;
Phylogeny
;
Glycosylation
;
Plant Proteins/chemistry*
;
Substrate Specificity
;
Cloning, Molecular
;
Amino Acid Sequence
2.Mechanism of inhibiting miR-34a-5p expression and promoting bone growth in mouse brain tissue by Semen Ziziphi Spinosae extract.
Yuan-Yuan PEI ; Yan XIE ; Na YIN ; Wen-Long MA ; Wei-Peng XING ; Gui-Zhi WANG ; Qing-Feng WANG
China Journal of Orthopaedics and Traumatology 2025;38(10):1061-1070
OBJECTIVE:
To explore the mechanism by which the extract of Semen Ziziphi Spinosae extract promotes bone growth in mice by modulation of the expression of miR-34a-5p in brain tissue.
METHODS:
Mice were assigned to four experimental groups:a normal control group, a drug administration group (receiving 0.320 mg·g-1 body weight of Semen Ziziphi Spinosae extract via intragastric administration), a positive control group (receiving 0.013 mg·g-1 body weight of jujube seed saponin via intragastric administration), and a combination group administration with Semen Ziziphi Spinosae extract plus a 5-hydroxytryptamine 2A receptor (5-HT2AR) agonist (intragastric administration of Semen Ziziphi Spinosae extract combined with intracerebroventricular injection of 8 μg P-MPPF per mice for the final three days of the experiment). Following a 20-day administration period, the effects of the interventions on bone growth, serum growth hormone (GH) levels, and 5-HT2AR expression in brain tissue were evaluated. MicroRNAs (miRNAs) that were differentially expressed in the brain tissues of mice exhibiting bone growth induced by Semen Ziziphi Spinosae extract, as compared to those in normal mice, were identified using a gene chip approach. The interaction between miR-34a-5p and 5-HT2AR was subsequently validated through quantitative reverse transcription polymerase chainreaction (RT-qPCR) and dual-luciferase reporter gene assays. Subsequently, by utilizing the miR-34a-5p inhibitor group and mimics group, along with the normal control group, the drug administration group, the positive control group, and the drug administration combined with miR-34a-5p inhibitor group, the variations in 5-HT2AR expression in mouse brain tissue across all groups were examined, and the binding activity of 5-hydroxytryptamine (5-HT) to the 5-hydroxytryptamine 1A receptor (5-HT1AR) in mice was assessed.
RESULTS:
The body lengths of the normal control group and the drug administration group were(8.9±0.3) and(10.4±0.4) cm;femur lengths were (8.5±0.3) and (9.1±0.5) mm;tibia lengths were (10.7±0.3) and (11.2±0.4) mm, respectively. The contents of GH levels were (58.6±8.2) and (72.9±6.1) ng·ml-1;and the contents of 5-HT2AR were (32.0±5.0) and (21.9± 5.5) ng·ml-1, respectively. Compared with the normal control group, the drug administration group promoted the growth of body length, femur, and tibia in mice, and increased GH secretion, showing statistically significant differences (P<0.05). Additionally, it significantly reduced the content of 5-HT2AR in brain tissue, with statistical significance (P<0.01). The gene chip analysis identified a total of 16 differentially expressed miRNAs, of which 13 were up-regulated and 3 were down-regulated. Bioinformatics analysis predicted that the up-regulated miR-34a-5p could regulate the expression of 5-HT2AR, a prediction that was confirmed through a dual-luciferase reporter gene assay, demonstrating a direct regulatory interaction between the two. Furthermore, in vivo experiments in mice revealed that overexpression and silencing of miR-34a-5p resulted in corresponding changes in the expression levels of 5-HT2AR in brain tissues/cells, as well as in the binding activity between 5-HT and 5-HT1AR.
CONCLUSION
The Semen Ziziphi Spinosae extract promotes animal bone growth by enhancing miR-34a-5p expression in brain tissue, downregulating the expression level of 5-HT2AR, improving the binding activity between 5-HT and 5-HT1AR, and extending slow-wave sleep duration, thereby stimulating GH secretion.
Animals
;
MicroRNAs/metabolism*
;
Mice
;
Male
;
Brain/metabolism*
;
Ziziphus/chemistry*
;
Bone Development/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Plant Extracts/pharmacology*
3.Explanation and interpretation of blood transfusion provisions for children with hematological diseases in the national health standard "Guideline for pediatric transfusion".
Ming-Yi ZHAO ; Rong HUANG ; Rong GUI ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(1):18-25
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion is one of the most commonly used supportive treatments for children with hematological diseases. This guideline provides guidance and recommendations for blood transfusions in children with aplastic anemia, thalassemia, autoimmune hemolytic anemia, glucose-6-phosphate dehydrogenase deficiency, acute leukemia, myelodysplastic syndromes, immune thrombocytopenic purpura, and thrombotic thrombocytopenic purpura. This article presents the evidence and interpretation of the blood transfusion provisions for children with hematological diseases in the "Guideline for pediatric transfusion", aiming to assist in the understanding and implementing the blood transfusion section of this guideline.
Humans
;
Child
;
Hematologic Diseases/therapy*
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
4.Explanation and interpretation of the compilation of blood transfusion provisions for children undergoing hematopoietic stem cell transplantation in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(2):139-143
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion for children undergoing hematopoietic stem cell transplantation is highly complex and challenging. This guideline provides recommendations on transfusion thresholds and the selection of blood components for these children. This article presents the evidence and interpretation of the transfusion provisions for children undergoing hematopoietic stem cell transplantation, with the aim of enhancing the understanding and implementation of the "Guideline for pediatric transfusion".
Humans
;
Hematopoietic Stem Cell Transplantation
;
Child
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
5.Explanation and interpretation of blood transfusion provisions for critically ill and severely bleeding pediatric patients in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI
Chinese Journal of Contemporary Pediatrics 2025;27(4):395-403
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Critically ill children often present with anemia and have a higher demand for transfusions compared to other pediatric patients. This guideline provides guidance and recommendations for blood transfusions in cases of general critical illness, septic shock, acute brain injury, extracorporeal membrane oxygenation, non-life-threatening bleeding, and hemorrhagic shock. This article interprets the background and evidence of the blood transfusion provisions for critically ill and severely bleeding children in the "Guideline for pediatric transfusion", aiming to enhance understanding and implementation of this aspect of the guidelines. Citation:Chinese Journal of Contemporary Pediatrics, 2025, 27(4): 395-403.
Humans
;
Critical Illness
;
Blood Transfusion/standards*
;
Child
;
Hemorrhage/therapy*
;
Practice Guidelines as Topic
6.Explanation and interpretation of blood transfusion provisions for children undergoing cardiac surgery in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Jin-Ping LIU
Chinese Journal of Contemporary Pediatrics 2025;27(7):778-785
To guide clinical blood transfusion practices in pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Children undergoing cardiac surgery are at high risk of bleeding, and the causes of perioperative anemia and coagulation disorders in neonates and children are complex and varied, often necessitating the transfusion of allogeneic blood components. This guideline provides direction and recommendations for specific measures in blood management for children undergoing cardiac surgery before, during, and after surgery. This article interprets the background and evidence for the formulation of the blood transfusion provisions for children undergoing cardiac surgery, hoping to facilitate the understanding and implementation of this guideline.
Humans
;
Cardiac Surgical Procedures
;
Blood Transfusion/standards*
;
Child
;
Practice Guidelines as Topic
7.Gentiopicroside Alleviates Atherosclerosis by Suppressing Reactive Oxygen Species-Dependent NLRP3 Inflammasome Activation in Vascular Endothelial Cells via SIRT1/Nrf2 Pathway.
Zhu-Qing LI ; Feng ZHANG ; Qi LI ; Li WANG ; Xiao-Qiang SUN ; Chao LI ; Xue-Mei YIN ; Chun-Lei LIU ; Yan-Xin WANG ; Xiao-Yu DU ; Cheng-Zhi LU
Chinese journal of integrative medicine 2025;31(2):118-130
OBJECTIVE:
To evaluate the protective effects of gentiopicroside (GPS) against reactive oxygen species (ROS)-induced NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation in endothelial cells, aiming to reduce atherosclerosis.
METHODS:
Eight-week-old male ApoE-deficient mice were randomly divided into 2 groups (n=10 per group): the vehicle group and the GPS treatment group. Both groups were fed a high-fat diet for 16 weeks. GPS (40 mg/kg per day) was administered by oral gavage to the GPS group, while the vehicle group received an equivalent volume of the vehicle solution. At the end of the treatment, blood and aortic tissues were collected for assessments of atherosclerosis, lipid profiles, oxidative stress, and molecular expressions related to NLRP3 inflammasome activation, ROS production, and apoptosis. Additionally, in vitro experiments on human aortic endothelial cells treated with oxidized low-density lipoprotein (ox-LDL) were conducted to evaluate the effects of GPS on NLRP3 inflammasome activation, pyroptosis, apoptosis, and ROS production, specifically examining the role of the sirtuin 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. SIRT1 and Nrf2 inhibitors were used to confirm the pathway's role.
RESULTS:
GPS treatment significantly reduced atherosclerotic lesions in the en face aorta (P<0.01), as well as in the thoracic and abdominal aortic regions, and markedly decreased sinus lesions within the aortic root (P<0.05 or P<0.01). Additionally, GPS reduced oxidative stress markers and proinflammatory cytokines, including interleukin (IL)-1 β and IL-18, in lesion areas (P<0.05, P<0.01). In vitro, GPS inhibited ox-LDL-induced NLRP3 activation, as evidenced by reduced NLRP3 (P<0.01), apoptosis-associated speck-like protein containing a CARD, cleaved-caspase-1, and cleaved-gasdermin D expressions (all P<0.01). GPS also decreased ROS production, apoptosis, and pyroptosis, with the beneficial effects being significantly reversed by SIRT1 or Nrf2 inhibitors.
CONCLUSION
GPS exerts an antiatherogenic effect by inhibiting ROS-dependent NLRP3 inflammasome activation via the SIRT1/Nrf2 pathway.
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Iridoid Glucosides/therapeutic use*
;
NF-E2-Related Factor 2/metabolism*
;
Animals
;
Atherosclerosis/metabolism*
;
Inflammasomes/drug effects*
;
Male
;
Sirtuin 1/metabolism*
;
Signal Transduction/drug effects*
;
Humans
;
Endothelial Cells/pathology*
;
Mice
;
Oxidative Stress/drug effects*
;
Apoptosis/drug effects*
;
Lipoproteins, LDL
;
Mice, Inbred C57BL
8.miR-34c-3p Inhibits Nasopharyngeal Carcinoma Development via Inhibiting M2 Polarization of Macrophages.
Yu Zi JI ; Yu Jie WANG ; Ji Qing MA ; Zhi Hua YIN ; Fei LIU ; Yan Zi ZANG ; Guang Ke WANG ; Yong TAI
Biomedical and Environmental Sciences 2025;38(2):219-229
OBJECTIVE:
miR-34c-3p is down-regulated in nasopharyngeal carcinoma (NPC). The biological role of miR-34c-3p in NPC and its underlying mechanisms are unknown and were explored in this study.
METHODS:
Flow cytometry and immunohistochemical staining were employed to detect cluster of differentiation 86 (CD86) and cluster of differentiation 206 (CD206) expression; quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were employed to examine mRNA expression and protein levels; cell counting kit-8 (CCK8) and transwell assays were employed to assess cell proliferation, migration, and invasion; and hematoxylin-eosin (HE) staining was employed to assess pathological changes in tumor tissues.
RESULTS:
Our results revealed that the miR-34c-3p mimic markedly inhibited M2 polarization of macrophages by targeting SLC7A11, and M2 macrophages transfected with the miR-34c-3p mimic inhibited the proliferation, migration, and invasion of NPC cells. The in vivo experiments further confirmed that miR-34c-3p mimics blocked tumor growth and reduced inflammatory infiltration in tumor tissues.
CONCLUSION
This study provides novel insights into the pathogenesis of NPC and a new treatment strategy.
MicroRNAs/metabolism*
;
Nasopharyngeal Carcinoma/genetics*
;
Humans
;
Animals
;
Nasopharyngeal Neoplasms/genetics*
;
Macrophages/physiology*
;
Cell Line, Tumor
;
Mice
;
Cell Proliferation
;
Mice, Inbred BALB C
;
Cell Movement
;
Male
;
Gene Expression Regulation, Neoplastic
;
Mice, Nude
;
Female
9.Proguanil induces bladder cancer cell apoptosis through mediating oxidation-reduction driven ferroptosis
Qing-Hua PAN ; Yin-Long LIU ; Yong LIU ; Bao-Chun LIAO ; Jian HU ; Zhi-Jian ZHU
The Chinese Journal of Clinical Pharmacology 2024;40(20):2988-2992
Objective To explore the potential mechanism of proguanil on the proliferation and apoptosis of bladder cancer cells.Methods 253J cells were randomly divided into control group(normal treatment),proguanil group(42.06 μmol·L-1 proguanil),pcDNA group(transfected with pcDNA+42.06 μmol·L-1 proguanil),FADS2 group[transfected fatty acid desaturase gene 2(FADS2)+42.06 μmol·L-1 proguanil],si-NC(transfection si-NC),si-FADS2(transfection si-FADS2),Ferrostatin-1 group(transfected with si-FADS2+10 μmol·L-1 ferrostatin-1).Real-time fluorescence quantitative polymerase chain reaction(RT-qPCR)assay was used to detect mRNA expression of related genes;Western blot assay was used to detect the expression of each protein;apoptosis was detected by TdT mediated dUDP nick end labeling(Tunel)assay;5-ethynyl-2'-deoxyuridine(EdU)assay to detect cell proliferation;the Transwell assay measures the ability of cells to migrate;Fe2+levels were determined by kit method;DCFH-DA probe was used to detect ROS levels.Results The mRNA levels of FADS2 in control group,proguanil group,pcDNA group and FADS2 group were 1.00±0.11,0.47±0.09,0.49±0.06 and 2.09±0.21,respectively;cell proliferation rate were(100.00±3.50)%,(54.31±4.90)%,(56.46±5.17)%and(78.76±6.50)%,respectively;the apoptosis rate were(3.92±0.53)%,(28.79±3.30)%,(27.20±2.90)%and(7.34±0.68)%,respectively;the migration number were 132.70±9.81,70.10±5.05,68.70±537 and 101.80±11.25,respectively;Fe2+level were(100.00±8.14)%,(201.33±17.84)%,(192.38±21.34)%and(116.70±10.90)%,respectively;GPX4 protein relative expression level were 0.77±0.05,0.31±0.05,0.34±0.05 and 0.68±0.06,respectively.The above indexes in proguanil group were compared with those in control group,the above indexes in FADS2 group were compared with those in pcDNA group,all the differences were statistically significant(all P<0.05).The ROS levels of si-NC,si-FADS2 and Ferrostatin-1 groups were 9.72±1.18,40.94±5.63 and 13.77±1.40,respectively.Compared the si-FADS2 group with the si-NC group,Ferrostatin-1 group compared with si-FADS2 group,ROS level were significantly different(all P<0.05).Conclusion Proguanil can induce the apoptosis of bladder cancer cells by inhibiting FADS2 expression mediated by oxidation-reduction driven ferroptosis pathway.
10.A Retrospective Study of the Effect of Spinopelvic Parameters on Fatty Infiltration in Paraspinal Muscles in Patients With Lumbar Spondylolisthesis
Jia-Chen YANG ; Jia-Yu CHEN ; Yin DING ; Yong-Jie YIN ; Zhi-Ping HUANG ; Xiu-Hua WU ; Zu-Cheng HUANG ; Yi-Kai LI ; Qing-An ZHU
Neurospine 2024;21(1):223-230
Objective:
The effect on fat infiltration (FI) of paraspinal muscles in degenerative lumbar spinal diseases has been demonstrated except for spinopelvic parameters. The present study is to identify the effect of spinopelvic parameters on FI of paraspinal muscle (PSM) and psoas major muscle (PMM) in patients with degenerative lumbar spondylolisthesis.
Methods:
A single-center, retrospective cross-sectional study of 160 patients with degenerative lumbar spondylolisthesis (DLS) and lumbar stenosis (LSS) who had lateral full-spine x-ray and lumbar spine magnetic resonance imaging was conducted. PSM and PMM FIs were defined as the ratio of fat to its muscle cross-sectional area. The FIs were compared among patients with different pelvic tilt (PT) and pelvic incidence (PI), respectively.
Results:
The PSM FI correlated significantly with pelvic parameters in DLS patients, but not in LSS patients. The PSM FI in pelvic retroversion (PT > 25°) was 0.54 ± 0.13, which was significantly higher in DLS patients than in normal pelvis (0.41 ± 0.14) and pelvic anteversion (PT < 5°) (0.34 ± 0.12). The PSM FI of DLS patients with large PI ( > 60°) was 0.50 ± 0.13, which was higher than those with small ( < 45°) and normal PI (0.37 ± 0.11 and 0.36 ± 0.13). However, the PSM FI of LSS patients didn’t change significantly with PT or PI. Moreover, the PMM FI was about 0.10–0.15, which was significantly lower than the PSM FI, and changed with PT and PI in a similar way of PSM FI with much less in magnitude.
Conclusion
FI of the PSMs increased with greater pelvic retroversion or larger pelvic incidence in DLS patients, but not in LSS patients.

Result Analysis
Print
Save
E-mail