1.Yimei Baijiang Formula Treats Colitis-associated Colorectal Cancer in Mice via NF-κB Signaling Pathway
Qian WU ; Xin ZOU ; Chaoli JIANG ; Long ZHAO ; Hui CHEN ; Li LI ; Zhi LI ; Jianqin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):119-130
ObjectiveTo explore the effects of Yimei Baijiang formula (YMBJF) on colitis-associated colorectal cancer (CAC) and the nuclear factor kappaB (NF-κB) signaling pathway in mice. MethodsSixty male Balb/c mice of 4-6 weeks old were randomized into 6 groups: Normal, model, capecitabine (0.83 g
2.Yimei Baijiang Formula Treats Colitis-associated Colorectal Cancer in Mice via NF-κB Signaling Pathway
Qian WU ; Xin ZOU ; Chaoli JIANG ; Long ZHAO ; Hui CHEN ; Li LI ; Zhi LI ; Jianqin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):119-130
ObjectiveTo explore the effects of Yimei Baijiang formula (YMBJF) on colitis-associated colorectal cancer (CAC) and the nuclear factor kappaB (NF-κB) signaling pathway in mice. MethodsSixty male Balb/c mice of 4-6 weeks old were randomized into 6 groups: Normal, model, capecitabine (0.83 g
3.Pattern Identification and Treatment of Constipation-Predominant Irritable Bowel Syndrome Based on the Turbidity Toxin Theory
Shiyuan FAN ; Qian YANG ; Diangui LI ; Zheng ZHI ; Xiaolan SU ; Bolin LI
Journal of Traditional Chinese Medicine 2025;66(3):300-303
Guided by the turbidity toxin theory, it is believed that the key pathogenesis of constipation-predominant irritable bowel syndrome is the obstruction of turbidity toxin and the disruption of intestinal function. Treatment is based on the principles of dispelling turbidity toxin and promoting intestinal function. The clinical patterns can be divided into three types, turbidity toxin heat accumulation pattern, turbidity toxin combined with liver depression and qi stagnation pattern, and turbidity toxin combined with qi and yin deficiency pattern. The treatment can respectively use self-prescribed Tongfu Jiangzhuo Formula (通腑降浊方) to clear heat and unblock the bowels, direct the turbid downward and resolve toxins; use self-prescribed Shugan Jiangzhuo Formula (疏肝降浊方) to soothe the liver and move qi, direct the turbid downward and resolve toxins; use self-prescribed Mazhi Jiangzhuo Formula (麻枳降浊方) to boost qi and nourish yin, moisten the intestines to remove turbidity and resolve toxins.
4.Eye Movement and Gait Variability Analysis in Chinese Patients With Huntington’s Disease
Shu-Xia QIAN ; Yu-Feng BAO ; Xiao-Yan LI ; Yi DONG ; Zhi-Ying WU
Journal of Movement Disorders 2025;18(1):65-76
Objective:
Huntington’s disease (HD) is characterized by motor, cognitive, and neuropsychiatric symptoms. Oculomotor impairments and gait variability have been independently considered as potential markers in HD. However, an integrated analysis of eye movement and gait is lacking. We performed multiple examinations of eye movement and gait variability in HTT mutation carriers, analyzed the consistency between these parameters and clinical severity, and then examined the associations between oculomotor impairments and gait deficits.
Methods:
We included 7 patients with pre-HD, 30 patients with HD and 30 age-matched controls. We collected demographic data and assessed the Unified Huntington’s Disease Rating Scale (UHDRS) score. Examinations, including saccades, smooth pursuit tests, and optokinetic (OPK) tests, were performed to evaluate eye movement function. The parameters of gait include stride length, walking velocity, step deviation, step length, and gait phase.
Results:
HD patients have significant impairments in the latency and velocity of saccades, the gain of smooth pursuit, and the gain and slow phase velocities of OPK tests. Only the speed of saccades significantly differed between pre-HD patients and controls. There are significant impairments in stride length, walking velocity, step length, and gait phase in HD patients. The parameters of eye movement and gait variability in HD patients were consistent with the UHDRS scores. There were significant correlations between eye movement and gait parameters.
Conclusion
Our results show that eye movement and gait are impaired in HD patients and that the speed of saccades is impaired early in pre-HD. Eye movement and gait abnormalities in HD patients are significantly correlated with clinical disease severity.
5.Eye Movement and Gait Variability Analysis in Chinese Patients With Huntington’s Disease
Shu-Xia QIAN ; Yu-Feng BAO ; Xiao-Yan LI ; Yi DONG ; Zhi-Ying WU
Journal of Movement Disorders 2025;18(1):65-76
Objective:
Huntington’s disease (HD) is characterized by motor, cognitive, and neuropsychiatric symptoms. Oculomotor impairments and gait variability have been independently considered as potential markers in HD. However, an integrated analysis of eye movement and gait is lacking. We performed multiple examinations of eye movement and gait variability in HTT mutation carriers, analyzed the consistency between these parameters and clinical severity, and then examined the associations between oculomotor impairments and gait deficits.
Methods:
We included 7 patients with pre-HD, 30 patients with HD and 30 age-matched controls. We collected demographic data and assessed the Unified Huntington’s Disease Rating Scale (UHDRS) score. Examinations, including saccades, smooth pursuit tests, and optokinetic (OPK) tests, were performed to evaluate eye movement function. The parameters of gait include stride length, walking velocity, step deviation, step length, and gait phase.
Results:
HD patients have significant impairments in the latency and velocity of saccades, the gain of smooth pursuit, and the gain and slow phase velocities of OPK tests. Only the speed of saccades significantly differed between pre-HD patients and controls. There are significant impairments in stride length, walking velocity, step length, and gait phase in HD patients. The parameters of eye movement and gait variability in HD patients were consistent with the UHDRS scores. There were significant correlations between eye movement and gait parameters.
Conclusion
Our results show that eye movement and gait are impaired in HD patients and that the speed of saccades is impaired early in pre-HD. Eye movement and gait abnormalities in HD patients are significantly correlated with clinical disease severity.
6.Huazhuo Jiedu Prescription Treats Ulcerative Colitis by Inhibiting Excessive Mitophagy via PINK1/Parkin Signaling Pathway
Haofeng ZHANG ; Jinye ZHOU ; Ziwei LIU ; Yican WANG ; Yirui CHENG ; Zheng ZHI ; Qian YANG ; Bolin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):182-189
ObjectiveTo investigate the mechanism of Huazhuo Jiedu prescription in treating ulcerative colitis (UC) by regulating mitophagy. MethodsThe genes related to mitophagy and UC were retrieved from GeneCards, and then the common genes of mitophagy and UC were analyzed by metascape to identify the genes related to mitophagy in UC. Animal experiments were carried out to decipher the mechanism by which Huazhuo Jiedu prescription treated UC by regulating mitophagy. Sixty C57BL/6 male mice were randomized into normal, model, high-, medium-, and low-dose (50, 25, 12.5 g·kg-1, respectively) Huazhuo Jiedu prescription, and mesalazine (0.52 g·kg-1·d-1) groups, with 10 mice in each group. After successful modeling by the dextran sulfate sodium-free drinking method, the colonic mucosal damage was observed by hematoxylin-eosin staining, and the ultracellular structure of colon mucosa was observed by transmission electron microscopy. The expression levels of mitophagy-related proteins PTEN-induced putative kinase 1 (PINK1) and Parkin protein were determined by Western blot. The expression of prohibitin 2 (PHB2), ubiquitin-specific protease 15 (USP15), ubiquitin-specific protease 30 (USP30) in the colon tissue was detected by immunofluorescence (IF). ResultsAll the drug intervention groups showed ameliorated pathological manifestations of the colonic mucosa and improved mitochondrial structures in UC mice. Compared with the normal group, the model group demonstrated up-regulated protein levels of PINK1 and Parkin (P<0.05), enhanced average fluorescence intensity of PHB2 (P<0.05), and weakened average fluorescence intensity of USP15 and USP30 (P<0.05). Compared with the model group, the mesalazine group and the high- and medium-dose Huazhuo Jiedu prescription groups showcased down-regulated protein levels of PINK1 and Parkin (P<0.05), decreased average fluorescence intensity of PHB2 (P<0.05), and enhanced average fluorescence intensity of USP15 and USP30 (P<0.05). The low-dose Huazhuo Jiedu prescription group showed down-regulated protein levels of PINK1 and Parkin (P<0.05), weakened average fluorescence intensity of PHB2 (P<0.05), and enhanced average fluorescence intensity of USP15 and USP30 (P<0.05). ConclusionHuazhuo Jiedu prescription can attenuate the intestinal mucosal injury and improve the mitochondrial cell ultrastructure in UC mice by regulating the expression of PINK1-Parkin pathway and inhibiting excessive mitophagy.
7.Huazhuo Jiedu Prescription Treats Ulcerative Colitis by Inhibiting Excessive Mitophagy via PINK1/Parkin Signaling Pathway
Haofeng ZHANG ; Jinye ZHOU ; Ziwei LIU ; Yican WANG ; Yirui CHENG ; Zheng ZHI ; Qian YANG ; Bolin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):182-189
ObjectiveTo investigate the mechanism of Huazhuo Jiedu prescription in treating ulcerative colitis (UC) by regulating mitophagy. MethodsThe genes related to mitophagy and UC were retrieved from GeneCards, and then the common genes of mitophagy and UC were analyzed by metascape to identify the genes related to mitophagy in UC. Animal experiments were carried out to decipher the mechanism by which Huazhuo Jiedu prescription treated UC by regulating mitophagy. Sixty C57BL/6 male mice were randomized into normal, model, high-, medium-, and low-dose (50, 25, 12.5 g·kg-1, respectively) Huazhuo Jiedu prescription, and mesalazine (0.52 g·kg-1·d-1) groups, with 10 mice in each group. After successful modeling by the dextran sulfate sodium-free drinking method, the colonic mucosal damage was observed by hematoxylin-eosin staining, and the ultracellular structure of colon mucosa was observed by transmission electron microscopy. The expression levels of mitophagy-related proteins PTEN-induced putative kinase 1 (PINK1) and Parkin protein were determined by Western blot. The expression of prohibitin 2 (PHB2), ubiquitin-specific protease 15 (USP15), ubiquitin-specific protease 30 (USP30) in the colon tissue was detected by immunofluorescence (IF). ResultsAll the drug intervention groups showed ameliorated pathological manifestations of the colonic mucosa and improved mitochondrial structures in UC mice. Compared with the normal group, the model group demonstrated up-regulated protein levels of PINK1 and Parkin (P<0.05), enhanced average fluorescence intensity of PHB2 (P<0.05), and weakened average fluorescence intensity of USP15 and USP30 (P<0.05). Compared with the model group, the mesalazine group and the high- and medium-dose Huazhuo Jiedu prescription groups showcased down-regulated protein levels of PINK1 and Parkin (P<0.05), decreased average fluorescence intensity of PHB2 (P<0.05), and enhanced average fluorescence intensity of USP15 and USP30 (P<0.05). The low-dose Huazhuo Jiedu prescription group showed down-regulated protein levels of PINK1 and Parkin (P<0.05), weakened average fluorescence intensity of PHB2 (P<0.05), and enhanced average fluorescence intensity of USP15 and USP30 (P<0.05). ConclusionHuazhuo Jiedu prescription can attenuate the intestinal mucosal injury and improve the mitochondrial cell ultrastructure in UC mice by regulating the expression of PINK1-Parkin pathway and inhibiting excessive mitophagy.
8.Eye Movement and Gait Variability Analysis in Chinese Patients With Huntington’s Disease
Shu-Xia QIAN ; Yu-Feng BAO ; Xiao-Yan LI ; Yi DONG ; Zhi-Ying WU
Journal of Movement Disorders 2025;18(1):65-76
Objective:
Huntington’s disease (HD) is characterized by motor, cognitive, and neuropsychiatric symptoms. Oculomotor impairments and gait variability have been independently considered as potential markers in HD. However, an integrated analysis of eye movement and gait is lacking. We performed multiple examinations of eye movement and gait variability in HTT mutation carriers, analyzed the consistency between these parameters and clinical severity, and then examined the associations between oculomotor impairments and gait deficits.
Methods:
We included 7 patients with pre-HD, 30 patients with HD and 30 age-matched controls. We collected demographic data and assessed the Unified Huntington’s Disease Rating Scale (UHDRS) score. Examinations, including saccades, smooth pursuit tests, and optokinetic (OPK) tests, were performed to evaluate eye movement function. The parameters of gait include stride length, walking velocity, step deviation, step length, and gait phase.
Results:
HD patients have significant impairments in the latency and velocity of saccades, the gain of smooth pursuit, and the gain and slow phase velocities of OPK tests. Only the speed of saccades significantly differed between pre-HD patients and controls. There are significant impairments in stride length, walking velocity, step length, and gait phase in HD patients. The parameters of eye movement and gait variability in HD patients were consistent with the UHDRS scores. There were significant correlations between eye movement and gait parameters.
Conclusion
Our results show that eye movement and gait are impaired in HD patients and that the speed of saccades is impaired early in pre-HD. Eye movement and gait abnormalities in HD patients are significantly correlated with clinical disease severity.
9.Effect of Xianglian Huazhuo Prescription on Hedgehog Signaling Pathway in Rats with Chronic Atrophic Gastritis
Jinye ZHOU ; Haofeng ZHANG ; Ziwei LIU ; Yican WANG ; Yanru CAI ; Yuxi GUO ; Jie WANG ; Zheng ZHI ; Qian YANG ; Bolin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):41-47
ObjectiveTo explore the therapeutic effect and mechanism of Xianglian Huazhuo prescription on chronic atrophic gastritis (CAG) in rats based on the Hedgehog signaling pathway. MethodsThe CAG rat model was established by sodium salicylate, N-methyl-N′-nitro-N-nitroguanidine (MNNG), and irregular feeding. The successfully modeled rats were randomly divided into a model group (180 mg·L-1), a moradan group (1.4 g·kg-1), and Xianglian Huazhuo Prescription groups with high, medium, and low doses (36, 9, 18 g·kg-1), followed by drug intervention. Hematoxylin-eosin (HE) staining was used to observe morphological changes in the gastric mucosa. Transmission electron microscopy was used to observe the ultrastructure of gastric mucosa cells. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of Sonic Hedgehog (Shh), Patched 1 (Ptch1), and Glioma-associated oncogene homolog 1 (Gli1). Western blot was used to detect the protein expression levels of Shh, Ptch1, and Gli1 in the gastric mucosa. Immunohistochemistry was used to observe the protein expression of the epithelial marker E-cadherin. ResultsCompared with the normal group, the CAG model group showed a reduction in gastric mucosal intrinsic glands and infiltration of inflammatory cells. The ultrastructure of gastric mucosal cells showed nuclear pyknosis, fewer mitochondria, and abnormal mitochondrial structure. The mRNA and protein expression of Shh, Ptch1, and Gli1 in the gastric mucosa were significantly decreased (P<0.05), and E-cadherin protein expression was decreased. Compared with the model group, the intervention groups showed varying degrees of improvement in histopathological morphology and cellular ultrastructure. The mRNA and protein expression of Shh, Ptch1, Gli1, and E-cadherin increased to varying degrees. Xianglian Huazhuo Prescription upregulated the expression of key Hedgehog pathway factors and E-cadherin at both the mRNA and protein levels (P<0.05). ConclusionXianglian Huazhuo prescription has a therapeutic effect on CAG in rats, and its mechanism may be related to activation of the Hedgehog signaling pathway and inhibition of epithelial-mesenchymal transition (EMT).
10.The Functional Diversity and Regulatory Mechanism of Clathrin Plaques
Yi-Ge ZHAO ; Zhao-Hong JIANG ; Qian-Yi ZHOU ; Zhi-Ming CHEN
Progress in Biochemistry and Biophysics 2025;52(8):1958-1971
Clathrin-mediated endocytosis (CME) is a critical process by which cells internalize macromolecular substances and initiate vesicle trafficking, serving as the foundation for many cellular activities. Central to this process are clathrin-coated structures (CCSs), which consist of clathrin-coated pits (CCPs) and clathrin plaques. While clathrin-coated pits are well-established in the study of endocytosis, clathrin plaques represent a more recently discovered but equally important component of this system. These plaques are large, flat, and extended clathrin-coated assemblies found on the cytoplasmic membrane. They are distinct from the more typical clathrin-coated pits in terms of their morphology, larger surface area, and longer lifespan. Recent research has revealed that clathrin plaques play roles that go far beyond endocytosis, contributing to diverse cellular processes such as cellular adhesion, mechanosensing, migration, and pathogen invasion. Unlike traditional clathrin-coated pits, which are transient and dynamic structures involved primarily in the internalization of molecules, clathrin plaques are more stable and extensive, often persisting for extended periods. Their extended lifespan suggests that they serve functions beyond the typical endocytic role, making them integral to various cellular processes. For instance, clathrin plaques are involved in the regulation of intercellular adhesion, allowing cells to better adhere to one another or to the extracellular matrix, which is crucial for tissue formation and maintenance. Furthermore, clathrin plaques act as mechanosensitive hubs, enabling the cell to sense and respond to mechanical stress, a feature that is essential for processes like migration, tissue remodeling, and even cancer progression. Recent discoveries have also highlighted the role of clathrin plaques in cellular signaling. These plaques can serve as scaffolds for signaling molecules, orchestrating the activation of various pathways that govern cellular behavior. For example, the recruitment of actin-binding proteins such as F-actin and vinculin to clathrin plaques can influence cytoskeletal dynamics, helping cells adapt to mechanical changes in their environment. This recruitment also plays a pivotal role in regulating cellular migration, which is crucial for developmental processes. Additionally, clathrin plaques influence receptor-mediated signal transduction by acting as platforms for the assembly of signaling complexes, thereby affecting processes such as growth factor signaling and cellular responses to extracellular stimuli. Despite the growing body of evidence that supports the involvement of clathrin plaques in a wide array of cellular functions, much remains unknown about the precise molecular mechanisms that govern their formation, maintenance, and turnover. For example, the factors that regulate the recruitment of clathrin and other coat proteins to form plaques, as well as the signaling molecules that coordinate plaque dynamics, remain areas of active research. Furthermore, the complex interplay between clathrin plaques and other cellular systems, such as the actin cytoskeleton and integrin-based adhesion complexes, needs further exploration. Studies have shown that clathrin plaques can respond to mechanical forces, with recent findings indicating that they act as mechanosensitive structures that help the cell adapt to changing mechanical environments. This ability underscores the multifunctional nature of clathrin plaques, which, in addition to their role in endocytosis, are involved in cellular processes such as mechanotransduction and adhesion signaling. In summary, clathrin plaques represent a dynamic and versatile component of clathrin-mediated endocytosis. They play an integral role not only in the internalization of macromolecular cargo but also in regulating cellular adhesion, migration, and signal transduction. While much has been learned about their structural and functional properties, significant questions remain regarding the molecular mechanisms that regulate their formation and their broader role in cellular physiology. This review highlights the evolving understanding of clathrin plaques, emphasizing their importance in both endocytosis and a wide range of other cellular functions. Future research is needed to fully elucidate the mechanisms by which clathrin plaques contribute to cellular processes and to better understand their implications for diseases, including cancer and tissue remodeling. Ultimately, clathrin plaques are emerging as crucial hubs that integrate mechanical, biochemical, and signaling inputs, providing new insights into cellular function and the regulation of complex cellular behaviors.

Result Analysis
Print
Save
E-mail