1.Exploring mechanism of Porana racemosa Roxb. in treating rheumatoid arthritis based on integration of network pharmacology and molecular docking combined with experimental validation
Chen-yu YE ; Ning LI ; Yin-zi CHEN ; Tong QU ; Jing HU ; Zhi-yong CHEN ; Hui REN
Acta Pharmaceutica Sinica 2025;60(1):117-129
Through network pharmacology and molecular docking technology, combined with
2.The Invariant Neural Representation of Neurons in Pigeon’s Ventrolateral Mesopallium to Stereoscopic Shadow Shapes
Xiao-Ke NIU ; Meng-Bo ZHANG ; Yan-Yan PENG ; Yong-Hao HAN ; Qing-Yu WANG ; Yi-Xin DENG ; Zhi-Hui LI
Progress in Biochemistry and Biophysics 2025;52(10):2614-2626
ObjectiveIn nature, objects cast shadows due to illumination, forming the basis for stereoscopic perception. Birds need to adapt to changes in lighting (meaning they can recognize stereoscopic shapes even when shadows look different) to accurately perceive different three-dimensional forms. However, how neurons in the key visual brain area in birds handle these lighting changes remains largely unreported. In this study, pigeons (Columba livia) were used as subjects to investigate how neurons in pigeon’s ventrolateral mesopallium (MVL) represent stereoscopic shapes consistently, regardless of changes in lighting. MethodsVisual cognitive training combined with neuronal recording was employed. Pigeons were first trained to discriminate different stereoscopic shapes (concave/convex). We then tested whether and how light luminance angle and surface appearance of the stereoscopic shapes affect their recognition accuracy, and further verify whether the results rely on specify luminance color. Simultaneously, neuronal firing activity of neurons was recorded with multiple electrode array implanted from the MVL during the presentation of difference shapes. The response was finally analyzed how selectively they responded to different stereoscopic shapes and whether their selectivity was affected by the changes of luminance condition (like lighting angle) or surface look. Support vector machine (SVM) models were trained on neuronal population responses recorded under one condition (light luminance angle of 45°) and used to decode responses under other conditions (light luminance angle of 135°, 225°, 315°) to verify the invariance of responses to different luminance conditions. ResultsBehavioral results from 6 pigeons consistently showed that the pigeons could reliably identify the core 3D shape (over 80% accuracy), and this ability wasn’t affected by changes in light angle or surface appearance. Statistical analysis of 88 recorded neurons from 6 pigeons revealed that 83% (73/88) showed strong selectivity for specific 3D shapes (selectivity index>0.3), and responses to convex shapes were consistently stronger than to concave shapes. These shape-selective responses remained stable across changes in light angle and surface appearance. Neural patterns were consistent under both blue and orange lighting. The decoding accuracy achieves above 70%, suggesting stable responses under different conditions (e.g., different lighting angles or surface appearance). ConclusionNeurons in the pigeon MVL maintain a consistent neural encoding pattern for different stereoscopic shapes, unaffected by illumination or surface appearance. This ensures stable object recognition by pigeons in changing visual environments. Our findings provide new physiological evidence for understanding how birds achieve stable perception (“invariant neural representations”) while coping with variations in the visual field.
3.Clinical trial of remifentanil combined with dexmedetomidine in orthopedic surgery for the elderly patients
Zhi-Min ZHANG ; Yong-Le LI ; Xiao-Long NIU ; Guang-Yi WU ; Ying WANG ; Lu GAN
The Chinese Journal of Clinical Pharmacology 2024;40(2):190-194
Objective To investigate the effects of remifentanil and dexmedetomidine controlled hypotension on coagulation function,cerebral oxygen metabolism and amino acid neurotransmitter levels in elderly patients undergoing orthopedic surgery.Methods The elderly patients who underwent lower extremity orthopedic surgery were divided into group A(given dexmedetomidine for hypotension),group B(given remifentanil for hypotension)and group C(given remifentanil combined with dexmedetomidine for hypotension)according to different anesthetic drugs.Systolic blood pressure(SBP),diastolic blood pressure(DBP)and heart rate(HR)were compared among the 3 groups.Cerebral oxygen metabolism[arterial oxygen content,(CaO2),oxygen saturation of internal jugular vein(SjvO2),oxygen content of internal jugular vein(CjvO2)],coagulation function[activated partial thromboplastin time(APTT),prothrombin time(PT),thrombin time(TT),plasma fibrinogen(FIB)],amino acid neurotransmitters[glutamic acid(Glu),aspartate(Asp),gamma-aminobutyric acid(GABA)]were compared,and the occurrence of adverse drug reactions during the trial were compared.Results At 12 h after anesthesia,the APTT of group A,group B and group C were(17.26±2.77),(17.37±2.92)and(31.11±4.74)s,respectively.GABA were(18.74±2.71),(19.22±2.60)and(23.37±2.59)mmol·L-1,respectively.3 min after withdrawal,CaO2 in group A,group B and group C were(139.31±9.03),(140.90±8.70)and(131.75±10.11)mL·L-1,respectively;SjvO2 were(63.59±2.23)%,(63.40±2.44)%and(68.82±3.36)%,respectively.The above indexes of group C were compared with those of group A and group B,and the differences were statistically significant(all P<0.05).The incidence of adverse drug reactions in group A,B and C were 12.82%,27.50%and 7.32%,respectively.The incidence of adverse drug reactions in group C were lower than that in group A and group B(P<0.05).Conclusion Remifentanil combined with dexmedetomidine for controlled hypotension in elderly orthopedic surgery has better blood pressure control effect,can improve postoperative coagulation function,maintain cerebral oxygen metabolism balance,reduce cognitive function injury and anesthesia adverse drug reactions.
4.Mechanism of Yi Sui Sheng Xue Fang in improving renal injury induced by chemotherapy in mice based on Keap1/Nrf2 signaling pathway
Yu LIU ; Li-Ying ZHANG ; Ya-Feng QI ; Yang-Yang LI ; Shang-Zu ZHANG ; Qian XU ; Guo-Xiong HAO ; Fan NIU ; Yong-Qi LIU ; Zhi-Ming ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(5):703-707
Objective To study the effect and mechanism of action of Yi Sui Sheng Xue Fang(YSSX)in ameliorating chemotherapy-induced renal injury in mice through The Kelch-like ECH-associated protein 1(KEAP1)/Nuclear factor erythroid-derived 2-like 2(NRF2)signalling pathway.Methods A mouse kidney injury model was induced by intraperitoneal injection of carboplatin(40 mg·kg-1).C57BL/6 mice were randomly divided into blank group(0.9%NaCl),model group(kidney injury model)and experimental-L,experimental-M,experimental-H groups(0.53,1.05 and 2.10 g·kg-1·d-1 YSSX by gavage for 7 d).Keap1 and Nrf2 were determined by Western blot;superoxide dismutase(SOD)and malondialdehyde(MDA)activities were determined by spectrophotometry.Results The protein expression levels of Keap1 in blank group,model group and experimental-L,experimental-M,experimental-H groups were 0.26±0.02,0.64±0.03,0.59±0.01,0.45±0.05 and 0.34±0.02;the protein expression levels of Nrf2 were 0.69±0.06,0.35±0.01,0.36±0.01,0.48±0.02 and 0.56±0.01;the enzyme activities of catalase(CAT)were(572.49±912.92),(334.60±4.92),(402.76±9.80),(475.35±5.21)and(493.00±12.03)U·mg-1;glutathione(GSH)were(2.79±0.06),(0.51±0.01),(0.59±0.07),(1.29±0.04)and(1.70±0.08)μmol·L1;SOD were(477.00±4.32),(260.67±6.13),(272.67±2.87),(386.33±3.68)and(395.00±12.25)U·mL-1;MDA were(3.89±0.02),(7.32±0.03),(6.94±0.14),(4.60±0.01)and(4.34±0.02)nmol·mg prot-1.The differences of the above indexes in the model group compared with the blank group were statistically significant(P<0.01,P<0.001);the differences of the above indexes in experimental-M,experimental-H groups compared withe model group were statistically significant(P<0.01,P<0.001).Conclusion YSSX can activate Keap1/Nrf2 signaling pathway and regulate the oxidative stress state of the organism,thus improving the renal injury caused by chemotherapy in mice.
5.Effects of emodin modulation of the HIF-1α/VEGF pathway on vascular endothelial cells damage in diabetic macroangiopathy rats
Qiu-Xiao ZHU ; Hui-Yao HAO ; Zi-Bo LIU ; Ming GAO ; Fang ZHANG ; Jing ZHOU ; Zhi-Hua HAO ; Li-Hui ZHANG ; Yong-Mei HAO
The Chinese Journal of Clinical Pharmacology 2024;40(6):859-863
Objective To investigate the impact of emodin(EM)on vascular endothelial cell injury in rats with diabetes macroangiopathy by regulating hypoxia inducible factor-1α(HIF-1α)/vascular endothelial growth factor(VEGF)signaling pathway.Methods SD rats were divided into blank group and modeling group,the rats in the modeling group were fed with high fat and high sugar combined with N-nitro-L-arginine methyl ester to build the diabetes macroangiopathy model,and the blank group was fed with ordinary diet.The vascular endothelial cells successfully isolated from the thoracic aorta of rats in blank group and modeling group were named control group and model group,respectively.The vascular endothelial cells in the modeling group were divided into model group,dimethyloxallyl glycine(DMOG)group(10 μmol·L-1DMOG),combined group(80 mg·L-1EM+10 μmol·L-1 DMOG)and experimental-L,-M,-H groups(20,40,80 mg·L-1 EM).The apoptosis of rat vascular endothelial cells was detected by flow cytometry;Western blot was applied to detect the expression of HIF-1αand VEGF proteins in rat vascular endothelial cells.Results The apoptosis rates of vascular endothelial cells in experimental-M,-H groups,DMOG group,combined group,model group and control group were(10.18±0.36)%,(6.28±0.20)%,(24.96±1.18)%,(12.36±0.49)%,(18.76±0.68)%and(4.59±0.26)%;HIF-1α protein levels were 0.96±0.07,0.78±0.06,2.03±0.12,1.05±0.13,1.58±0.12 and 0.69±0.05;VEGF protein levels were 0.59±0.05,0.23±0.02,0.98±0.06,0.63±0.04,0.86±0.07 and 0.11±0.01.The above indexes in the model group were compared with the control,DMOG,experimental-M and experimental-H groups,and the above indexes in the combined group were compared with the experimental-H group,and the differences were statistically significant(all P<0.05).Conclusion EM may inhibit HIF-1α/VEGF pathway to improve vascular endothelial cell injury in rats with diabetes macroangiopathy.
6.Research status on the mechanism of traditional Chinese medicine regulating TGF-β1/Smads signaling pathway to intervene liver fibrosis
Yong-Biao TAO ; Shi-Rui YANG ; Long-De WANG ; Ya-Na WU ; Zhi-Ming ZHANG ; Fu LI
The Chinese Journal of Clinical Pharmacology 2024;40(6):918-922
Hepatic fibrosis(HF)is a pathophysiological outcome of chronic liver injury and is characterized by excessive accumulation of extracellular matrix protein.A number of studies have confirmed that the signaling pathways formed by transforming growth factor-β1(TGF-β1)and its downstream Smad family play an important role in the occurrence and development of HF,and the traditional Chinese medicine(TCM)research targeting this pathway is currently a hot spot in the reversal of HF.Therefore,taking TGF-β1/Smads signaling pathway as the entry point,this paper reviewed the mechanism of action of TCM compound formula and single drug extract in intervening TGF-β1/Smad pathway and related factors upstream and downstream of the pathway to reverse HF in recent years,revealed the targeted therapeutic effect of TCM,and provided new strategies for clarifying the mechanism of TCM.
7.Pathological mechanism of hypoxia-inducible factor-1α in tumours and the current status of research on Chinese medicine intervention
Yu LIU ; Li-Ying ZHANG ; Guo-Xiong HAO ; Ya-Feng QI ; Qian XU ; Ye-Yuan LIU ; Chao YUAN ; Peng ZHU ; Yong-Qi LIU ; Zhi-Ming ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(11):1670-1674
Traditional Chinese medicine can regulate the hypoxia-inducible factor-1α(HIF-1α)signalling pathway and slow down tumour progression mainly by inhibiting tumour angiogenesis,glycolysis,epithelial mesenchymal transition and other pathological processes.This paper,starting from HIF-1α and related factors,reviews its pathological mechanism in tumours and the research of traditional Chinese medicine interventions with the aim of providing theoretical references for the treatment of tumours with traditional Chinese medicine.
9.GLUL stabilizes N-Cadherin by antagonizing β-Catenin to inhibit the progresses of gastric cancer.
Qiwei JIANG ; Yong LI ; Songwang CAI ; Xingyuan SHI ; Yang YANG ; Zihao XING ; Zhenjie HE ; Shengte WANG ; Yubin SU ; Meiwan CHEN ; Zhesheng CHEN ; Zhi SHI
Acta Pharmaceutica Sinica B 2024;14(2):698-711
Glutamate-ammonia ligase (GLUL, also known as glutamine synthetase) is a crucial enzyme that catalyzes ammonium and glutamate into glutamine in the ATP-dependent condensation. Although GLUL plays a critical role in multiple cancers, the expression and function of GLUL in gastric cancer remain unclear. In the present study, we have found that the expression level of GLUL was significantly lower in gastric cancer tissues compared with adjacent normal tissues, and correlated with N stage and TNM stage, and low GLUL expression predicted poor survival for gastric cancer patients. Knockdown of GLUL promoted the growth, migration, invasion and metastasis of gastric cancer cells in vitro and in vivo, and vice versa, which was independent of its enzyme activity. Mechanistically, GLUL competed with β-Catenin to bind to N-Cadherin, increased the stability of N-Cadherin and decreased the stability of β-Catenin by alerting their ubiquitination. Furthermore, there were lower N-Cadherin and higher β-Catenin expression levels in gastric cancer tissues compared with adjacent normal tissues. GLUL protein expression was correlated with that of N-Cadherin, and could be the independent prognostic factor in gastric cancer. Our findings reveal that GLUL stabilizes N-Cadherin by antagonizing β-Catenin to inhibit the progress of gastric cancer.
10.Establishment and evaluation methods of a novel animal model of liver depression transforming into fire syndrome-related depression
Dan SU ; Jian LI ; Gen-hua ZHU ; Ming YANG ; Liang-liang LIAO ; Zhi-fu AI ; Hui-zhen LI ; Ya-li LIU ; Yong-gui SONG
Acta Pharmaceutica Sinica 2024;59(6):1680-1690
Through a compound induction method, combined with neurobehavioral, macroscopic characterization and objective pathological evaluation indicators, a murine depression model of liver depression transforming into fire syndrome was constructed and confirmed. The model was constructed using a combination of sleep deprivation, light exposure, and alternate-day food deprivation. Evaluation was conducted at three levels: face validity, constructs validity, and predictive validity. The establishment of the liver depression transforming into fire syndrome depression model was further validated through the counterproof of traditional Chinese medicine formulas. In terms of face validity, compared to the control group, mice in the model group exhibited typical depressive symptoms in neurobehavioral assessments; the general observation of the model group mice reveals disheveled and lackluster fur, along with delayed and easily agitated responses. Additionally, there is a substantial increase in water consumption. In the sleep phase detection of mouse, the model group showed a significant increase in the proportion of time spent in the wake phase during sleep, accompanied by a significant decrease in the proportions of time spent in both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep phases. There are significant differences in physiological indicators such as average blood flow velocity, blood flow rate, tongue, urine, and claw color (r values) in the internal carotid artery. Structural validity demonstrated that levels of 5-hydroxytryptamine (5-HT), dopamine (DA), and

Result Analysis
Print
Save
E-mail