1.A new glycoside from Alstonia mairei Lévl.
Li-ke WANG ; Bing-yan LI ; Zhen-zhu ZHAO ; Yan-zhi WANG ; Xiao-kun LI ; Wei-sheng FENG ; Ying-ying SI
Acta Pharmaceutica Sinica 2025;60(1):191-195
Nine compounds were isolated and purified from 90% ethanol extract of
2.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
3.Research on Magnetic Stimulation Intervention Technology for Alzheimer’s Disease Guided by Heart Rate Variability
Shu-Ting CHEN ; Du-Yan GENG ; Chun-Meng FAN ; Wei-Ran ZHENG ; Gui-Zhi XU
Progress in Biochemistry and Biophysics 2025;52(5):1264-1278
ObjectiveNon-invasive magnetic stimulation technology has been widely used in the treatment of Alzheimer’s disease (AD), but there is a lack of convenient and timely methods for evaluating and providing feedback on the effectiveness of the stimulation, which can be used to guide the adjustment of the stimulation protocol. This study aims to explore the possibility of heart rate variability (HRV) in diagnosing AD and guiding AD magnetic stimulation intervention techniques. MethodsIn this study, we used a 40 Hz, 10 mT pulsed magnetic field to expose AD mouse models to whole-body exposure for 18 d, and detected the behavioral and electroencephalographic signals before and after exposure, as well as the instant electrocardiographic signals after exposure every day. ResultsUsing one-way ANOVA and Pearson correlation coefficient analysis, we found that some HRV indicators could identify AD mouse models as accurately as behavioral and electroencephalogram(EEG) changes (P<0.05) and significantly distinguish the severity of the disease (P<0.05), including rMSSD, pNN6, LF/HF, SD1/SD2, and entropy arrangement. These HRV indicators showed good correlation and statistical significance with behavioral and EEG changes (r>0.3, P<0.05); HRV indicators were significantly modulated by the magnetic field exposure before and after the exposure, both of which were observed in the continuous changes of electrocardiogram (ECG) (P<0.05), and the trend of the stimulation effect was more accurately observed in the continuous changes of ECG. ConclusionHRV can accurately reflect the pathophysiological changes and disease degree, quickly evaluate the effect of magnetic stimulation, and has the potential to guide the pattern of magnetic exposure, providing a new idea for the study of personalized electromagnetic neuroregulation technology for brain diseases.
4.The neurophysiological mechanisms of exercise-induced improvements in cognitive function.
Jian-Xiu LIU ; Bai-Le WU ; Di-Zhi WANG ; Xing-Tian LI ; Yan-Wei YOU ; Lei-Zi MIN ; Xin-Dong MA
Acta Physiologica Sinica 2025;77(3):504-522
The neurophysiological mechanisms by which exercise improves cognitive function have not been fully elucidated. A comprehensive and systematic review of current domestic and international neurophysiological evidence on exercise improving cognitive function was conducted from multiple perspectives. At the molecular level, exercise promotes nerve cell regeneration and synaptogenesis and maintains cellular development and homeostasis through the modulation of a variety of neurotrophic factors, receptor activity, neuropeptides, and monoamine neurotransmitters, and by decreasing the levels of inflammatory factors and other modulators of neuroplasticity. At the cellular level, exercise enhances neural activation and control and improves brain structure through nerve regeneration, synaptogenesis, improved glial cell function and angiogenesis. At the structural level of the brain, exercise promotes cognitive function by affecting white and gray matter volumes, neural activation and brain region connectivity, as well as increasing cerebral blood flow. This review elucidates how exercise improves the internal environment at the molecular level, promotes cell regeneration and functional differentiation, and enhances the brain structure and neural efficiency. It provides a comprehensive, multi-dimensional explanation of the neurophysiological mechanisms through which exercise promotes cognitive function.
Animals
;
Humans
;
Brain/physiology*
;
Cognition/physiology*
;
Exercise/physiology*
;
Nerve Regeneration/physiology*
;
Neuronal Plasticity/physiology*
5.Study on anti-depression effect of Suanzaoren Decoction based on liver metabolomics.
Jing LI ; Ya-Nan TONG ; Hong-Tao WANG ; Shao-Hua ZHAO ; Wei-Yan CHEN ; Zhi-Wei LI ; Min-Yan LIU
China Journal of Chinese Materia Medica 2025;50(1):19-31
To explore the anti-depression effect of Suanzaoren Decoction(SZRD), the regulatory effects on endogenous metabolites in the liver of rats with depression induced by chronic unpredictable mild stress(CUMS) were analyzed by using LC-MS metabolomics. The rats were randomly divided into normal control group, model group, low-dose SZRD group, high-dose SZRD group, and positive drug group. The CUMS depression model was replicated by applying a variety of stimuli, such as fasting and water deprivation, ice water swimming, hot water swimming, day and night reversal, tail clamping, and restraint for rats. Modeling and treatment were conducted for 56 days. The behavioral indexes of rats in each group, including body weight, open field test, sucrose preference test, and tail suspension test, were observed. Plasma samples and liver tissue samples were collected, and the contents of 5-hydroxytryptamine(5-HT), dopamine(DA), and norepinephrine(NE) in plasma were measured using enzyme-linked immunosorbent assay(ELISA). Meanwhile, the regulatory effects of SZRD on the liver metabolic profile of CUMS model rats were analyzed by the LC-MS metabolomics method. The results show that SZRD can significantly improve the depression-like behavior of CUMS model rats and increase the neurotransmitter levels of 5-HT, DA, and NE in plasma. A total of 24 different metabolites in the rats' liver are identified using the LC-MS metabolomics method, and SZRD can reverse 13 of these metabolites. Metabolic pathway analysis indicates that nine metabolic pathways are found to be significantly associated with depression, and in the low-dose SZRD group, four pathways can be regulated, including pentose phosphate pathway, purine metabolism, inositol phosphate metabolism, and sphingolipid metabolism. In the high-dose SZRD group, two metabolic pathways can be regulated, including sphingolipid metabolism and glycerol glycerophospholipid metabolism. Sphingolipid metabolism is a metabolic pathway that can be regulated by SZRD at different doses, so it is speculated that it may be the primary pathway through which SZRD can alleviate metabolic disturbances in the liver of CUMS model rats.
Animals
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Metabolomics
;
Depression/metabolism*
;
Male
;
Liver/drug effects*
;
Rats, Sprague-Dawley
;
Antidepressive Agents/administration & dosage*
;
Serotonin/blood*
;
Humans
;
Disease Models, Animal
;
Behavior, Animal/drug effects*
6.Saponins from Panax japonicus ameliorate high-fat diet-induced anxiety by modulating FGF21 resistance.
Yan HUANG ; Bo-Wen YUE ; Yue-Qin HU ; Wei-Li LI ; Dian-Mei YU ; Jie XU ; Jin-E WANG ; Zhi-Yong ZHOU
China Journal of Chinese Materia Medica 2025;50(1):29-41
Anxiety disorder is a highly prevalent psychological illness, and research has shown that obesity is a significant risk factor for its development. This study explored the ameliorative effects and mechanisms of saponins from Panax japonicus(SPJ) on anxiety disorder in mice fed a high-fat diet(HFD). Fifty C57BL/6J mice were randomly divided into normal control diet(NCD) group, HFD group, and low-and high-dose SPJ groups. At week 12, six mice from the HFD group were further divided into a control group(treated with DMSO) and an exogenous fibroblast growth factor 21(FGF21) group(administered rFGF21). The anxiety-like behavior of the mice was assessed using the open field test and elevated plus maze test. Hematoxylin-eosin(HE) staining and oil red O staining were performed to observe pathological changes in the liver and adipose tissue. Glucose metabolism was evaluated through the glucose tolerance test(GTT) and insulin tolerance test(ITT). Western blot analysis was performed to detect the expression of FGF21 and its downstream-related proteins in the liver and cortex, along with the expression of brain-derived neurotrophic factor(BDNF), disks large homolog 4(DLG4), and synaptophysin(SYP) in the cortex. Real-time quantitative fluorescent PCR(qPCR) was used to detect the expression of FGF21 and its receptor genes in the liver and cortex. Immunofluorescence staining was employed to examine the expression of neuronal activator c-Fos, FGF21, and the FGF21 co-receptor β-klotho in the cerebral cortex. The results showed that SPJ significantly improved the frequency of activity in the open arms of the elevated plus maze and the central area of the open field in HFD mice, up-regulated the expression of BDNF, DLG4, and SYP, and effectively alleviated anxiety-like behaviors in HFD mice. Compared with the NCD group, HFD mice exhibited up-regulated expression of FGF21 in the liver and cerebral cortex, while the expression of fibroblast growth factor receptor 1(FGFR1) and β-klotho was significantly down-regulated, suggesting that HFD mice exhibited FGF21 resistance. SPJ markedly up-regulated the β-klotho levels in HFD mice, reversing FGF21 resistance. Further comparison with exogenously administered FGF21 revealed that SPJ activates brain cortical regions in a consistent manner, and additionally, SPJ promotes the number and colocalization of c-Fos and β-klotho positive cells in the brain cortex. In summary, SPJ effectively alleviates anxiety-like behaviors in HFD mice. Its mechanism is associated with up-regulation of β-klotho expression in the brain, reversal of FGF21 resistance, and subsequent activation of neurons in the cerebral cortex and amygdala.
Animals
;
Diet, High-Fat/adverse effects*
;
Fibroblast Growth Factors/genetics*
;
Mice
;
Male
;
Panax/chemistry*
;
Mice, Inbred C57BL
;
Anxiety/etiology*
;
Saponins/administration & dosage*
;
Brain-Derived Neurotrophic Factor/genetics*
;
Humans
;
Liver/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
7.One-year seedling cultivation technology and seed germination-promoting mechanism by warm water soaking of Polygonatum kingianum var. grandifolium.
Ke FU ; Jian-Qing ZHOU ; Zhi-Wei FAN ; Mei-Sen YANG ; Ya-Qun CHENG ; Yan ZHU ; Yan SHI ; Jin-Ping SI ; Dong-Hong CHEN
China Journal of Chinese Materia Medica 2025;50(4):1022-1030
Polygonati Rhizoma demonstrates significant potential for addressing both chronic and hidden hunger. The supply of high-quality seedlings is a primary factor influencing the development of the Polygonati Rhizoma industry. Warm water soaking is often used in agriculture to promote the rapid germination of seeds, while its application and molecular mechanism in Polygonati Rhizoma have not been reported. To rapidly obtain high-quality seedlings, this study treated Polygonatum kingianum var. grandifolium seeds with sand storage at low temperatures, warm water soaking, and cultivation temperature gradients. The results showed that the culture at 25 ℃ or sand storage at 4 ℃ for 2 months rapidly broke the seed dormancy of P. kingianum var. grandifolium, while the culture at 20 ℃ or sand storage at 4 ℃ for 1 month failed to break the seed dormancy. Soaking seeds in 60 ℃ warm water further increased the germination rate, germination potential, and germination index. Specifically, the seeds soaked at 60 ℃ and cultured at 25 ℃ without sand storage treatment(Aa25) achieved a germination rate of 78. 67%±1. 53% on day 42 and 83. 40%±4. 63% on day 77. The seeds pretreated with sand storage at 4 ℃ for 2 months, soaked in 60 ℃ water, and then cultured at 25 ℃ achieved a germination rate comparable to that of Aa25 on day 77. Transcriptomic analysis indicated that warm water soaking might promote germination by triggering reactive oxygen species( ROS), inducing the expression of heat shock factors( HSFs) and heat shock proteins( HSPs), which accelerated DNA replication, transcript maturation, translation, and processing, thereby facilitating the accumulation and turnover of genetic materials. According to the results of indoor controlled experiments and field practices, maintaining a germination and seedling cultivation environment at approximately 25 ℃ was crucial for the one-year seedling cultivation of P. kingianum var. grandifolium.
Germination
;
Seedlings/genetics*
;
Water/metabolism*
;
Seeds/metabolism*
;
Polygonatum/genetics*
;
Temperature
;
Plant Proteins/genetics*
;
Plant Dormancy
8.Mechanism of Quanduzhong Capsules in treating knee osteoarthritis from perspective of spatial heterogeneity.
Zhao-Chen MA ; Zi-Qing XIAO ; Chu ZHANG ; Yu-Dong LIU ; Ming-Zhu XU ; Xiao-Feng LI ; Zhi-Ping WU ; Wei-Jie LI ; Yi-Xin YANG ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2209-2216
This study aims to systematically characterize the targeted effects of Quanduzhong Capsules on cartilage lesions in knee osteoarthritis by integrating spatial transcriptomics data mining and animal experiments validation, thereby elucidating the related molecular mechanisms. A knee osteoarthritis model was established using Sprague-Dawley(SD) rats, via a modified Hulth method. Hematoxylin and eosin(HE) staining was employed to detect knee osteoarthritis-associated pathological changes in knee cartilage. Candidate targets of Quanduzhong Capsules were collected from the HIT 2.0 database, followed by bioinformatics analysis of spatial transcriptomics datasets(GSE254844) from cartilage tissues in clinical knee osteoarthritis patients to identify spatially specific disease genes. Furthermore, a "formula candidate targets-spatially specific genes in cartilage lesions" interaction network was constructed to explore the effects and major mechanisms of Quanduzhong Capsules in distinct cartilage regions. Experimental validation was conducted through immunohistochemistry using animal-derived biospecimens. The results indicated that Quanduzhong Capsules effectively inhibited the degenerative changes in the cartilage of affected joints in rats, which was associated with the regulation of Quanduzhong Capsules on the thioredoxin-interacting protein(TXNIP)-NOD-like receptor family pyrin domain containing 3(NLRP3)-bone morphogenetic protein receptor type 2(BMPR2)-fibronectin 1(FN1)-matrix metallopeptidase 2(MMP2) signal axis in the articular cartilage surface and superficial zones, subsequently inhibiting cartilage matrix degradation leading to oxidative stress and inflammatory diffusion. In summary, this study clarifies the spatially specific targeted effects and protective mechanisms of Quanduzhong Capsules within pathological cartilage regions in knee osteoarthritis, providing theoretical and experimental support for the clinical application of this drug in the targeted therapy on the inflamed cartilage.
Animals
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Male
;
Humans
;
Capsules
;
Female
;
Disease Models, Animal
9.Network Meta-analysis of efficacy of different Chinese medicine injections in treating transient ischemic attack.
Jin HAN ; Yong-Kang SUN ; Yue YUAN ; Fang-Biao XU ; Yan-Bo SONG ; Wei-Jie WANG ; Xin-Zhi WANG
China Journal of Chinese Materia Medica 2025;50(8):2282-2297
This study aims to evaluate the efficacy of Chinese medicine injections in treating transient ischemic attack(TIA) based on network Meta-analysis. Randomized controlled trial(RCT) about Chinese medicine injections in treating TIA were retrieved from PubMed, Web of Science, Cochrane Library, EMbase, CNKI, VIP, Wanfang, and SinoMed with the time interval from inception to March 1, 2024. The methodological quality of the included articles was assessed by ROB 2.0, and the GRADE system was employed to evaluate the quality of evidence. The gemtc package of R 4.1.2 was used to perform the network Meta-analysis. Finally, 63 RCTs with a total sample size of 5 750 cases were included, involving 11 Chinese medicine injections(Shuxuetong Injection, Danhong Injection, Shuxuening Injection, Ginkgo Damo Injection, Shenxiong Glucose Injection, Ligustrazine Injection, Salviae Miltiorrhizae and Ligustrazine Hydrochloride Injection, Salvianolic Acids for Injection, Dengzhan Xixin Injection, Guhong Injection, and Xueshuantong Injection). All patients received conventional western medicine treatment, and the experimental group was additionally treated with Chinese medicine injection. Network Meta-analysis yielded the following results.(1) In terms of improving the clinical total response rate, 11 Chinese medicine injections combined with conventional western medicine outperformed conventional western medicine alone, and Dengzhan Xixin Injection + conventional western medicine had the best effect.(2) In terms of reducing plasma viscosity, 7 Chinese medicine injections combined with conventional western medicine outperformed conventional western medicine alone, and Shenxiong Glucose Injection + conventional western medicine had the best effect.(3) In terms of reducing whole blood high shear viscosity, 6 Chinese medicine injections combined with conventional western medicine outperformed conventional western medicine alone, and Guhong Injection + conventional western medicine had the best effect.(4) In terms of reducing whole blood low shear viscosity, 6 Chinese medicine injections combined with conventional western medicine outperformed conventional western medicine alone, and Shuxuening Injection + conventional western medicine had the best effect.(5) In terms of reducing fibrinogen, 9 Chinese medicine injections combined with conventional western medicine outperformed conventional western medicine alone, and Ginkgo Damo Injection + conventional western medicine had the best effect.(6) In terms of increasing the average blood flow velocity, 3 Chinese medicine injections combined with conventional western medicine outperformed conventional western medicine alone, and Shuxuening Injection + conventional western medicine had the best effect. In summary, compared with conventional western medicine alone, Chinese medicine injections combined with conventional western medicine were effective in improving the clinical total response rate and the average blood flow velocity, as well as reducing plasma viscosity, whole blood high shear viscosity, whole blood low shear viscosity, and fibrinogen. However, due to the limited quality and quantity of the included articles, the above conclusions need to be verified by more high-quality, multi-center, and large-sample RCT.
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Injections
;
Ischemic Attack, Transient/drug therapy*
;
Randomized Controlled Trials as Topic
;
Treatment Outcome
10.Correlation between differences in starch gelatinization, water distribution, and terpenoid content during steaming process of Curcuma kwangsiensis root tubers by multivariate statistical analysis.
Yan LIANG ; Meng-Na YANG ; Xiao-Li QIN ; Zhi-Yong ZHANG ; Zhong-Nan SU ; Hou-Kang CAO ; Ke-Feng ZHANG ; Ming-Wei WANG ; Bo LI ; Shuo LI
China Journal of Chinese Materia Medica 2025;50(10):2684-2694
To elucidate the mechanism by which steaming affects the quality of Curcuma kwangsiensis root tubers, methods such as LSCM, RVA, dual-wavelength spectrophotometry, LF-NMR, and LC-MS were employed to qualitatively and quantitatively detect changes in starch gelatinization characteristics, water distribution, and material composition of C. kwangsiensis root tubers under different steaming durations. Based on multivariate statistical analysis, the correlation between differences in gelatinization parameters, water distribution, and terpenoid material composition was investigated. The results indicate that steaming affects both starch gelatinization and water distribution in C. kwangsiensis. During the steaming process, transformations occur between amylose and amylopectin, as well as between semi-bound water and free water. After 60 min of steaming, starch gelatinization and water distribution reached an equilibrium state. The content of amylopectin, the amylose-to-amylopectin ratio, and parameters such as gelatinization temperature, viscosity, breakdown value, and setback value were significantly correlated(P≤0.05). Additionally, the amylose-to-amylopectin ratio was significantly correlated with total free water and total water content(P≤0.05). Steaming induced differences in the material composition of C. kwangsiensis root tubers. Clustering of primary metabolites in the OPLS-DA model was distinct, while secondary metabolites were classified into 9 clusters using the K-means clustering algorithm. Differential terpenoid metabolites such as(-)-α-curcumene were significantly correlated with zerumbone, retinal, and all-trans-retinoic acid(P<0.05). Curcumenol was significantly correlated with isoalantolactone and ursolic acid(P<0.05), while all-trans-retinoic acid was significantly correlated with both zerumbone and retinal(P<0.05). Alpha-tocotrienol exhibited a significant correlation with retinal and all-trans-retinoic acid(P<0.05). Amylose was extremely significantly correlated with(-)-α-curcumene, curcumenol, zerumbone, retinal, all-trans-retinoic acid, and α-tocotrienol(P<0.05). Amylopectin was significantly correlated with zerumbone(P<0.05) and extremely significantly correlated with(-)-α-curcumene, curcumenol, zerumbone, retinal, all-trans-retinoic acid, and 9-cis-retinoic acid(P<0.01). The results provide scientific evidence for elucidating the mechanism of quality formation of steamed C. kwangsiensis root tubers as a medicinal material.
Curcuma/chemistry*
;
Starch/chemistry*
;
Multivariate Analysis
;
Water/chemistry*
;
Terpenes/analysis*
;
Plant Roots/chemistry*
;
Plant Tubers/chemistry*
;
Drugs, Chinese Herbal/chemistry*

Result Analysis
Print
Save
E-mail