1.Four new sesquiterpenoids from the roots of Atractylodes macrocephala
Gang-gang ZHOU ; Jia-jia LIU ; Ji-qiong WANG ; Hui LIU ; Zhi-Hua LIAO ; Guo-wei WANG ; Min CHEN ; Fan-cheng MENG
Acta Pharmaceutica Sinica 2025;60(1):179-184
The chemical constituents in dried roots of
2.Effects of prescription pre-review system on rational drug use and off-label drug use management in outpatient and emergency department
Zhi GAO ; Lulu HAN ; Fang LIU ; Rui JIAO ; Wei ZHANG ; Yi ZHANG
China Pharmacy 2025;36(13):1666-1670
OBJECTIVE To explore the effects of prescription pre-review system on rational drug use and off-label drug use management in outpatient and emergency department. METHODS A retrospective analysis was conducted on outpatient and emergency department prescription data from three phases in our hospital: January to May 2023 (silent review phase, control group), June to October 2023 (systematic automatic review phase, intervention group 1), and November 2023 to March 2024 (phase combining systematic automatic review with centralized feedback from pharmacists to physicians regarding irrational prescriptions, intervention group 2). These phases followed the implementation of our hospital’s pre-prescription review software. Statistical analysis of the prompt rate of alert, rate of irrational prescriptions, registered the off-label drug use rate and false positive irrationality prescription rate were conducted. Meanwhile, the composition of irrational prescriptions was analyzed, and evidence- based evaluation of the off-label drug use proposed by clinicians was also conducted. RESULTS Compared with control group, the prompt rate of alert and the rate of irrational prescriptions in intervention group 1 were all decreased significantly after receiving pop-up notification, with statistically significant differences (P<0.05). With the help of system warning and the pharmacists feedback, the prompt rate of alert and the rate of irrational prescriptions declined further in the intervention group 2, but there was no statistically significant difference when compared with intervention group 1 (P>0.05). The main type of irrational drug use was improper administration routes. When comparing intervention group 1 with the control group, as well as intervention group 2 with intervention group 1, a significant decrease in the rate of improper administration routes was observed, with statistically significant differences (P<0.05). Compared with control group, there was no significant difference in the registered off-label drug use rate of intervention group 1 and intervention group 2 (P>0.05). The doctor’s awareness of off-label drug use registration increased due to the real-time alerts from the pre-prescription review software, along with the pharmacists’ regular summarization and feedback. Total 13 items registrations of off-label drug use were proposed by clinicians from June 2023 to March 2024, all of which were supported by evidence of varying levels; among them, 3 items received FDA approval, 4 items were included in the Micromedex database, and the remaining 6 items were supported by evidence from system reviews or randomized controlled trials. CONCLUSIONS Prescription pre-review system can improve the level of rational drug use and assist in the standardized management of off-label drug use.
3.Junctophilin-2 MORN-Helix Domain: Structural Basis for Membrane Binding and Hypertrophic Cardiomyopathy-associated Mutations
Jing-Xin WANG ; Zhi-Wei LI ; Wei LIU ; Wen-Qing ZHANG ; Jian-Chao LI
Progress in Biochemistry and Biophysics 2025;52(8):2103-2116
ObjectiveJunctophilin-2 (JPH2) is an essential structural protein that maintains junctional membrane complexes (JMCs) in cardiomyocytes by tethering the plasma membrane to the sarcoplasmic reticulum, thereby facilitating excitation-contraction (E-C) coupling. Mutations in JPH2 have been associated with hypertrophic cardiomyopathy (HCM), but the molecular mechanisms governing its membrane-binding properties and the functional relevance of its membrane occupation and recognition nexus (MORN) repeat motifs remain incompletely understood. This study aimed to elucidate the structural basis of JPH2 membrane association and its implications for HCM pathogenesis. MethodsA recombinant N-terminal fragment of mouse JPH2 (residues1-440), encompassing the MORN repeats and an adjacent helical region, was purified under near-physiological buffer conditions.X-ray crystallography was employed to determine the structure of the JPH2 MORN-Helix domain. Sequence conservation analysis across species and junctophilin isoforms was performed to assess the evolutionary conservation of key structural features. Functional membrane-binding assays were conducted using liposome co-sedimentation and cell-based localization studies in COS7 and HeLa cells. In addition, site-directed mutagenesis targeting positively charged residues and known HCM-associated mutations, including R347C, was used to evaluate their effects on membrane interaction and subcellular localization. ResultsThe crystal structure of the mouse JPH2 MORN-Helix domain was resolved at 2.6 Å, revealing a compact, elongated architecture consisting of multiple tandem MORN motifs arranged in a curved configuration, forming a continuous hydrophobic core stabilized by alternating aromatic residues. A C-terminal α-helix further reinforced structural integrity. Conservation analysis identified the inner groove of the MORN array as a highly conserved surface, suggesting its role as a protein-binding interface. A flexible linker segment enriched in positively charged residues, located adjacent to the MORN motifs, was found to mediate direct electrostatic interactions with negatively charged phospholipid membranes. Functional assays demonstrated that mutation of these basic residues impaired membrane association, while the HCM-linked R347C mutation completely abolished membrane localization in cellular assays, despite preserving the overall MORN-Helix fold in structural modeling. ConclusionThis study provides structural insight into the membrane-binding mechanism of the cardiomyocyte-specific protein JPH2, highlighting the dual roles of its MORN-Helix domain in membrane anchoring and protein interactions. The findings clarify the structural basis for membrane targeting via a positively charged linker and demonstrate that disruption of this interaction—such as that caused by the R347C mutation—likely contributes to HCM pathogenesis. These results not only enhance current understanding of JPH2 function in cardiac E-C coupling but also offer a structural framework for future investigations into the assembly and regulation of JMCs in both physiological and disease contexts.
4.Study on HPLC fingerprint and quantitative analysis of multi-components by single-marker content determination method for Shechuan naolitong granules
Xiaoyan ZHANG ; Kairu DING ; Hong ZHANG ; Wenbing ZHI ; Shengnan JIANG ; Zongren XU ; Ni CUI ; Xiangfeng WEI ; Yang LIU
China Pharmacy 2025;36(19):2409-2414
OBJECTIVE To provide a reference for optimizing and promoting the quality standards of Shechuan naolitong granules. METHODS Fifteen batches of Shechuan naolitong granules were used as samples to establish HPLC fingerprints using the Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine (2012 edition). Similarity evaluation and common peak identification were performed, and orthogonal partial least squares discriminant analysis (OPLS-DA) was used to assess quality differences among different batches and to screen quality differential components. Using salvianolic acid B(SAB) as the internal reference, quantitative analysis of multi-components by single-marker (QAMS) was developed to simultaneously determine geniposidic acid (GA), chlorogenic acid (CA), vaccarin (VA), ferulic acid (FA) and senkyunolide I (SI). The results were compared with those obtained by the external standard method. RESULTS A total of 13 common peaks were identified in the HPLC fingerprints of 15 batches of samples, and the similarities of the spectra were all above 0.96. Seven chromatographic peaks were identified as GA (peak 3), CA (peak 6), VA (peak 8), FA (peak 9), SI (peak 11), SAB(peak 12) and TA(peak 13). OPLS-DA indicated that the differential quality markers among 15 batches were peaks 5, 11 (SI), and 12 (SAB).Using SAB as the internal reference, the relative correction factors for GA, CA, VA, FA and SI were calculated as 1.058 4, 0.594 3, 0.643 3, 0.342 7 and 0.262 8, respectively. The mean content of GA, CA, VA, FA, SI and SAB across the 15 batches of samples were 0.155 0, 0.085 4, 0.140 3, 0.071 8, 0.072 7, 1.276 3 mg/g, respectively, showing no significant difference compared with the ESM (P>0.05). CONCLUSIONS The established HPLC fingerprint and QAMS are simple, efficient and economical, providing a reference for the quality control and further development of Shechuan naolitong granules.
5.Advances in application of small-molecule compounds in neuronal reprogramming.
Zi-Wei DAI ; Hong LIU ; Yi-Min YUAN ; Jing-Yi ZHANG ; Shang-Yao QIN ; Zhi-Da SU
Acta Physiologica Sinica 2025;77(1):181-193
Neuronal reprogramming is an innovative technique for converting non-neuronal somatic cells into neurons that can be used to replace lost or damaged neurons, providing a potential effective therapeutic strategy for central nervous system (CNS) injuries or diseases. Transcription factors have been used to induce neuronal reprogramming, while their reprogramming efficiency is relatively low, and the introduction of exogenous genes may result in host gene instability or induce gene mutation. Therefore, their future clinical application may be hindered by these safety concerns. Compared with transcription factors, small-molecule compounds have unique advantages in the field of neuronal reprogramming, which can overcome many limitations of traditional transcription factor-induced neuronal reprogramming. Here, we review the recent progress in the research of small-molecule compound-mediated neuronal reprogramming and its application in CNS regeneration and repair.
Humans
;
Cellular Reprogramming/drug effects*
;
Neurons/cytology*
;
Animals
;
Transcription Factors
;
Small Molecule Libraries/pharmacology*
;
Nerve Regeneration
6.The neurophysiological mechanisms of exercise-induced improvements in cognitive function.
Jian-Xiu LIU ; Bai-Le WU ; Di-Zhi WANG ; Xing-Tian LI ; Yan-Wei YOU ; Lei-Zi MIN ; Xin-Dong MA
Acta Physiologica Sinica 2025;77(3):504-522
The neurophysiological mechanisms by which exercise improves cognitive function have not been fully elucidated. A comprehensive and systematic review of current domestic and international neurophysiological evidence on exercise improving cognitive function was conducted from multiple perspectives. At the molecular level, exercise promotes nerve cell regeneration and synaptogenesis and maintains cellular development and homeostasis through the modulation of a variety of neurotrophic factors, receptor activity, neuropeptides, and monoamine neurotransmitters, and by decreasing the levels of inflammatory factors and other modulators of neuroplasticity. At the cellular level, exercise enhances neural activation and control and improves brain structure through nerve regeneration, synaptogenesis, improved glial cell function and angiogenesis. At the structural level of the brain, exercise promotes cognitive function by affecting white and gray matter volumes, neural activation and brain region connectivity, as well as increasing cerebral blood flow. This review elucidates how exercise improves the internal environment at the molecular level, promotes cell regeneration and functional differentiation, and enhances the brain structure and neural efficiency. It provides a comprehensive, multi-dimensional explanation of the neurophysiological mechanisms through which exercise promotes cognitive function.
Animals
;
Humans
;
Brain/physiology*
;
Cognition/physiology*
;
Exercise/physiology*
;
Nerve Regeneration/physiology*
;
Neuronal Plasticity/physiology*
7.Study on anti-depression effect of Suanzaoren Decoction based on liver metabolomics.
Jing LI ; Ya-Nan TONG ; Hong-Tao WANG ; Shao-Hua ZHAO ; Wei-Yan CHEN ; Zhi-Wei LI ; Min-Yan LIU
China Journal of Chinese Materia Medica 2025;50(1):19-31
To explore the anti-depression effect of Suanzaoren Decoction(SZRD), the regulatory effects on endogenous metabolites in the liver of rats with depression induced by chronic unpredictable mild stress(CUMS) were analyzed by using LC-MS metabolomics. The rats were randomly divided into normal control group, model group, low-dose SZRD group, high-dose SZRD group, and positive drug group. The CUMS depression model was replicated by applying a variety of stimuli, such as fasting and water deprivation, ice water swimming, hot water swimming, day and night reversal, tail clamping, and restraint for rats. Modeling and treatment were conducted for 56 days. The behavioral indexes of rats in each group, including body weight, open field test, sucrose preference test, and tail suspension test, were observed. Plasma samples and liver tissue samples were collected, and the contents of 5-hydroxytryptamine(5-HT), dopamine(DA), and norepinephrine(NE) in plasma were measured using enzyme-linked immunosorbent assay(ELISA). Meanwhile, the regulatory effects of SZRD on the liver metabolic profile of CUMS model rats were analyzed by the LC-MS metabolomics method. The results show that SZRD can significantly improve the depression-like behavior of CUMS model rats and increase the neurotransmitter levels of 5-HT, DA, and NE in plasma. A total of 24 different metabolites in the rats' liver are identified using the LC-MS metabolomics method, and SZRD can reverse 13 of these metabolites. Metabolic pathway analysis indicates that nine metabolic pathways are found to be significantly associated with depression, and in the low-dose SZRD group, four pathways can be regulated, including pentose phosphate pathway, purine metabolism, inositol phosphate metabolism, and sphingolipid metabolism. In the high-dose SZRD group, two metabolic pathways can be regulated, including sphingolipid metabolism and glycerol glycerophospholipid metabolism. Sphingolipid metabolism is a metabolic pathway that can be regulated by SZRD at different doses, so it is speculated that it may be the primary pathway through which SZRD can alleviate metabolic disturbances in the liver of CUMS model rats.
Animals
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Metabolomics
;
Depression/metabolism*
;
Male
;
Liver/drug effects*
;
Rats, Sprague-Dawley
;
Antidepressive Agents/administration & dosage*
;
Serotonin/blood*
;
Humans
;
Disease Models, Animal
;
Behavior, Animal/drug effects*
8.Construction and in vitro pharmacodynamic evaluation of a polydopamine nanodelivery system co-loaded with gambogic acid, Fe(Ⅲ), and glucose oxidase.
Jian LIU ; Zhi-Huai CHEN ; Xin-Qi WEI ; Ling-Ting LIN ; Wei XU
China Journal of Chinese Materia Medica 2025;50(1):111-119
Gambogic acid(GA), a caged xanthone derivative isolated from Garcinia Hanburyi, exhibits significant antitumor activity and has advanced to phase Ⅱ clinical trials for lung cancer treatment in China. However, the clinical application of GA is severely hindered by its inherent limitations, including poor water solubility, a lack of targeting specificity, and significant side effects. Novel drug delivery systems not only overcome these pharmacological deficiencies but also integrate multiple therapeutic modalities, transcending the limitations of monotherapeutic approaches. In this study, we designed a multifunctional nanodelivery platform(PDA-PEG-Fe(Ⅲ)-GOx-GA) using polydopamine(PDA) as the core material. After the modification of PDA with polyethylene glycol(PEG), Fe(Ⅲ) ions, glucose oxidase(GOx), and GA were sequentially loaded via coordination interactions, electrostatic adsorption, and hydrophobic interactions, respectively. This system demonstrated excellent physiological stability, hemocompatibility, and photothermal conversion efficiency. Notably, under dual stimuli of pH and near-infrared(NIR) irradiation, PDA-PEG-Fe(Ⅲ)-GOx-GA achieved controlled GA release, with a cumulative release rate of 58.3% at 12 h, 3.6-fold higher than that under non-stimulated conditions. Under NIR irradiation, the synergistic effects of PDA-mediated photothermal therapy, Fe(Ⅲ)-induced chemodynamic therapy, GOx-generated starvation therapy, and GA-mediated chemotherapy resulted in effective inhibition of tumor cell proliferation(91.5% inhibition rate) and induction of apoptosis(83.3% apoptosis rate). This multi-modal approach realized a comprehensive treatment strategy for lung cancer, integrating various therapeutic pathways.
Xanthones/pharmacology*
;
Humans
;
Polymers/chemistry*
;
Glucose Oxidase/pharmacology*
;
Indoles/chemistry*
;
Drug Delivery Systems
;
Drug Carriers/chemistry*
;
Nanoparticles/chemistry*
;
Cell Line, Tumor
9.Network pharmacology and animal experiments reveal molecular mechanisms of Cordyceps sinensis in ameliorating heart aging and injury in mice by regulating Nrf2/HO-1/NF-κB pathway.
Si-Yi LIU ; Yue TU ; Wei-Ming HE ; Wen-Jie LIU ; Kai-Zhi WEN ; Cheng-Juan LI ; Chao HAN ; Xin-Yu LIANG
China Journal of Chinese Materia Medica 2025;50(4):1063-1074
This study aims to explore the effects and mechanisms of the traditional Chinese medicine Cordyceps sinensis(CS) in ameliorating heart aging and injury in mice based on animal experiments and network pharmacology. A mouse model of heart aging was established by continuously subcutaneous injection of D-galactose(D-gal). Thirty mice were randomly assigned into a normal group, a model group, a low-dose CS(CS-L) group, a high-dose CS(CS-H) group, and a vitamin E(VE) group. Mice in these groups were administrated with normal saline, different doses of CS suspension, or VE suspension via gavage daily. After 60 days of treatment with D-gal and various drugs, all mice were euthanized, and blood and heart tissue samples were collected for determination of the indicators related to heart aging and injury in mice. Experimental results showed that both high and low doses of CS and VE ameliorated the aging phenotype, improved the heart index and myocardial enzyme spectrum, restored the expression levels of proteins associated with cell cycle arrest and senescence-associated secretory phenotypes(SASP), and alleviated the fibrosis and histopathological changes of the heart tissue in model mice. From the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP),259 active ingredients of CS were retrieved. From Gene Cards and OMIM, 2 568 targets related to heart aging were identified, and 133common targets shared by CS and heart aging were obtained. The Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes( KEGG) pathway enrichment revealed that the pathways related to heart aging involved oxidative stress,apoptosis, inflammation-related signaling pathways, etc. The animal experiment results showed that both high and low doses of CS and VE ameliorated oxidative stress and apoptosis in the heart tissue to varying degrees in model mice. Additionally, CS-H and VE activated the nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1) pathway and inhibited the expression of key proteins in the nuclear factor-κB(NF-κB) pathway in the heart tissue of model mice. In conclusion, this study demonstrated based on network pharmacology and animal experiments that CS may alleviate heart aging and injury in aging mice by reducing oxidative stress,apoptosis, and inflammation in the heart via the Nrf2/HO-1/NF-κB pathway.
Animals
;
Cordyceps/chemistry*
;
Mice
;
NF-E2-Related Factor 2/genetics*
;
NF-kappa B/genetics*
;
Aging/genetics*
;
Male
;
Signal Transduction/drug effects*
;
Network Pharmacology
;
Drugs, Chinese Herbal/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Heart/drug effects*
;
Humans
;
Myocardium/metabolism*
;
Membrane Proteins/genetics*
10.Oral Chinese patent medicines in treatment of dysmenorrhea and clinical research status: a scoping review.
Xiao-Jun BU ; Zhi-Ran LI ; Wen-Ya WANG ; Rui-Xue LIU ; Jing-Yu REN ; Lin XU ; Xing LIAO ; Wei-Wei SUN
China Journal of Chinese Materia Medica 2025;50(3):787-797
A scoping review was performed to systematically search and summarize the clinical research in the treatment of dysmenorrhea with oral Chinese patent medicines. The oral Chinese patent medicines for treating dysmenorrhea in three major drug lists, guidelines, and textbooks were screened, and the relevant clinical trials were retrieved from eight Chinese and English databases. The key information of the included trials was extracted and visually analyzed. A total of 50 Chinese patent medicines were included, among which oral Chinese patent medicines for the dysmenorrhea patients with the syndrome of Qi stagnation and blood stasis accounted for the highest proportion, and the average daily cost varied greatly among Chinese patent medicines. A total of 150 articles were included, involving 22 Chinese patent medicines, among which Guizhi Fuling Capsules/Pills, Sanjie Zhentong Capsules, and Dan'e Fukang Soft Extract were the most frequently studied. These articles mainly reported randomized controlled trial(RCT), which mainly focused on the comparison of the intervention effect between Chinese patent medicines combined with western medicine and western medicine alone, and the sample size was generally 51-100 cases. The high-frequency outcome indicators belonged to nine domains such as effective rate, adverse reactions, and laboratory examinations. This study showed that oral Chinese patent medicines had advantages in the treatment of dysmenorrhea, and the annual number of related clinical trials showed an overall growing trend. However, there were still problems such as insufficient safety information and vague description of traditional Chinese medicine(TCM) syndromes types in the instructions of Chinese patent medicines. The available clinical research had shortcomings such as uneven distribution of Chinese patent medicines, limited research scale, poor methodological rigor, and insufficient standardization of outcome indicators. In the future, it is necessary to deepen the development of high-quality clinical research and improve the contents of the instructions to ensure the effectiveness and safety of the clinical application of oral Chinese patent medicines in the treatment of dysmenorrhea.
Dysmenorrhea/drug therapy*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Female
;
Administration, Oral
;
Nonprescription Drugs/administration & dosage*

Result Analysis
Print
Save
E-mail