1.Mechanism of Hezi Decoction in reducing toxic side effects of Euphoriae Ebracteolata Radix on intestine based on proteomics.
Qian-Lin CHEN ; Hong-Li YU ; Hao WU ; Xin-Zhi WANG ; Tong-Laga LI ; Bing-Bing LIU ; Xin LI ; Yu-Xin GU ; Yan-Qing XU
China Journal of Chinese Materia Medica 2025;50(12):3214-3222
This paper aimed to explore the intestinal toxicity of Euphoriae Ebracteolata Radix(EER) before and after being processed with Mongolian medicine Hezi Decoction(HZD) and the toxicity-reducing mechanism of this processing method. The intestinal toxicity in rats treated with unprocessed EER and HZD-processed EER extracts via 95% ethanol was compared. The comparison was based on several indicators, including fecal volume, serum diamine oxidase(DAO) and D-lactate(D-LA) levels, the water content of various intestinal segments and their contents, and inflammatory factor levels in intestinal segments. Tandem mass tag(TMT) quantitative proteomics technology was employed to analyze the key proteins associated with changes in intestinal toxicity between unprocessed EER and HZD-processed EER. The results indicated that compared with the blank group, unprocessed EER significantly increased the fecal volume, serum DAO and D-LA levels, water content of the ileal segment and its contents, as well as the release levels of inflammatory factors, including tumor necrosis factor(TNF-α) and interleukin-1 beta(IL-1β) in the ileal segment of rats(P<0.05), indicating that EER can cause diarrhea, increase intestinal permeability, and induce intestinal inflammation. Compared with those in the unprocessed EER group, all indicators in the HZD-processed EER group were significantly reduced(P<0.05). The TMT quantitative proteomics analysis revealed that a total of 6 487 proteins were identified in the rat ileum tissue. Compared to the blank group, 182 proteins exhibited significant changes in the unprocessed EER group, while 907 proteins in the HZD-processed EER group showed significant changes. The intersection of the differential proteins between the two groups identified 38 common proteins. Among them, the protein levels of intestinal barrier tight junction protein claudin3, squalene monooxidase(Sqle), clusterin, Na~+/H~+ exchange regulatory cofactor NHE-RF3(Pdzk1), and Y+L amino acid transporter 1(Slc7a7) exhibited significant changes before and after processing, and these changes were closely related to intestinal barrier function. Compared with the blank group, the expression of claudin3, Pdzk1, and Slc7a7 in the raw product group was significantly down-regulated(P<0.05),while the expression of Sqle and clusterin was significantly up-regulated(P<0.05).Compared with the raw product group, the expression of claudin3, Pdzk1, and Slc7a7 in the processed product group of HZD was significantly up-regulated(P<0.05), while the expression of Sqle and clusterin was significantly down-regulated(P<0.05). Western blot was used to detect the expression level of claudin 3 in the ileum of rats in each group. The results show that compared to that in the blank group, the expression level of claudin 3 in the unprocessed EER group was significantly reduced(P<0.01); compared to that in the unprocessed EER group, the expression level of claudin 3 in the HZD-processed EER group was significantly increased(P<0.01). This finding aligned with the proteomic outcomes, indicating that claudin 3 protein levels could serve as a crucial indicator for intestinal damage caused by EER. In summary, HZD-processed EER can reduce EER's intestinal toxicity, and the primary mechanism for its alleviation of intestinal barrier damage is the regulation of the intestinal barrier tight junction protein claudin 3 and other intestinal-related proteins.
Animals
;
Drugs, Chinese Herbal/adverse effects*
;
Proteomics
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Intestines/drug effects*
;
Intestinal Mucosa/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
2.Wheat-grain moxibustion at the Guanyuan point to regulate low testosterone and hypothalamic-pituitary-gonadal axis in naturally aged mice.
Meng-Fan CUI ; Bing-Zhe MA ; Zhi-Yang YIN ; Yu-Tong QIAN ; Dan-Li JIAO ; Shi-Min LIU
National Journal of Andrology 2025;31(2):157-164
OBJECTIVE:
To investigate the effects of wheat-grain moxibustion at the Guanyuan point on testosterone (T) synthesis and the hypothalamic-pituitary-gonadal (HPG) axis in naturally aged mice.
METHODS:
We fed 40 twelve-month-old SPF male C57BL/6J mice with a normal diet for 3 months, randomized them into a moxibustion and an aged group of an equal number, and selected 7 four-month-old ones as young controls. We treated the animals of the moxibustion group by wheat-grain moxibustion at the Guanyuan point, once 5 moxibustion sticks, qd, 5 times a week, and fed those of the aged group normally, all for 12 weeks. After treatment, we obtained the testicular index of the mice, observed the histomorphology of the testis tissue by HE staining, measured the contents of T in the testis, gonadotropin-releasing hormone (GnRH) in the hypothalamus and total T (tT), free T (fT), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the serum by ELISA, and determined the expressions of silence information regulator-1 (SIRT1), P53, glutathione peroxidase (GPX4) and cholesterol side-chain?cleavage enzyme (CYP11A1) in the testis by Western blot.
RESULTS:
Compared with the young controls, the mice in the aged group showed obviously losing and dull hair, energy declination, loose structure of the spermatogenic tubule with different degrees of cell loss and rupture, reduced testicular index, and evident aging phenotype. In comparison with the aged mice, the animals of the moxibustion group were fairly energetic and exhibited distinct structure of the spermatogenic tubules, orderly arranged and highly differentiated cells at all levels, significantly increased T level, up-regulated expressions of SIRT1, GPX4 and CYP11A1, and down-regulated expression of P53 in testis tissue, and elevated levels of GnRH, FSH, LH, tT and fT in the HPG axis.
CONCLUSION
Wheat-grain moxibustion at the Guanyuan point protects testosterone synthesis in the testis tissue of naturally aged mice, promotes negative feedback regulation of the HPG axis, and improves low testosterone.
Animals
;
Male
;
Moxibustion
;
Mice
;
Testosterone/metabolism*
;
Mice, Inbred C57BL
;
Testis/metabolism*
;
Hypothalamo-Hypophyseal System/metabolism*
;
Triticum
;
Gonadotropin-Releasing Hormone/metabolism*
;
Luteinizing Hormone/blood*
;
Follicle Stimulating Hormone/blood*
;
Aging
;
Hypothalamus/metabolism*
;
Acupuncture Points
;
Sirtuin 1/metabolism*
;
Hypothalamic-Pituitary-Gonadal Axis
3.Expert consensus on management of instrument separation in root canal therapy.
Yi FAN ; Yuan GAO ; Xiangzhu WANG ; Bing FAN ; Zhi CHEN ; Qing YU ; Ming XUE ; Xiaoyan WANG ; Zhengwei HUANG ; Deqin YANG ; Zhengmei LIN ; Yihuai PAN ; Jin ZHAO ; Jinhua YU ; Zhuo CHEN ; Sijing XIE ; He YUAN ; Kehua QUE ; Shuang PAN ; Xiaojing HUANG ; Jun LUO ; Xiuping MENG ; Jin ZHANG ; Yi DU ; Lei ZHANG ; Hong LI ; Wenxia CHEN ; Jiayuan WU ; Xin XU ; Jing ZOU ; Jiyao LI ; Dingming HUANG ; Lei CHENG ; Tiemei WANG ; Benxiang HOU ; Xuedong ZHOU
International Journal of Oral Science 2025;17(1):46-46
Instrument separation is a critical complication during root canal therapy, impacting treatment success and long-term tooth preservation. The etiology of instrument separation is multifactorial, involving the intricate anatomy of the root canal system, instrument-related factors, and instrumentation techniques. Instrument separation can hinder thorough cleaning, shaping, and obturation of the root canal, posing challenges to successful treatment outcomes. Although retrieval of separated instrument is often feasible, it carries risks including perforation, excessive removal of tooth structure and root fractures. Effective management of separated instruments requires a comprehensive understanding of the contributing factors, meticulous preoperative assessment, and precise evaluation of the retrieval difficulty. The application of appropriate retrieval techniques is essential to minimize complications and optimize clinical outcomes. The current manuscript provides a framework for understanding the causes, risk factors, and clinical management principles of instrument separation. By integrating effective strategies, endodontists can enhance decision-making, improve endodontic treatment success and ensure the preservation of natural dentition.
Humans
;
Root Canal Therapy/adverse effects*
;
Consensus
;
Root Canal Preparation/adverse effects*
4.Causal Associations between Particulate Matter 2.5 (PM 2.5), PM 2.5 Absorbance, and Inflammatory Bowel Disease Risk: Evidence from a Two-Sample Mendelian Randomization Study.
Xu ZHANG ; Zhi Meng WU ; Lu ZHANG ; Bing Long XIN ; Xiang Rui WANG ; Xin Lan LU ; Gui Fang LU ; Mu Dan REN ; Shui Xiang HE ; Ya Rui LI
Biomedical and Environmental Sciences 2025;38(2):167-177
OBJECTIVE:
Several epidemiological observational studies have related particulate matter (PM) exposure to Inflammatory bowel disease (IBD), but many confounding factors make it difficult to draw causal links from observational studies. The objective of this study was to explore the causal association between PM 2.5 exposure, its absorbance, and IBD.
METHODS:
We assessed the association of PM 2.5 and PM 2.5 absorbance with the two primary forms of IBD (Crohn's disease [CD] and ulcerative colitis [UC]) using Mendelian randomization (MR) to explore the causal relationship. We conducted two-sample MR analyses with aggregated data from the UK Biobank genome-wide association study. Single-nucleotide polymorphisms linked with PM 2.5 concentrations or their absorbance were used as instrumental variables (IVs). We used inverse variance weighting (IVW) as the primary analytical approach and four other standard methods as supplementary analyses for quality control.
RESULTS:
The results of MR demonstrated that PM 2.5 had an adverse influence on UC risk (odds ratio [ OR] = 1.010; 95% confidence interval [ CI] = 1.001-1.019, P = 0.020). Meanwhile, the results of IVW showed that PM 2.5 absorbance was also causally associated with UC ( OR = 1.012; 95% CI = 1.004-1.019, P = 0.002). We observed no causal relationship between PM 2.5, PM 2.5 absorbance, and CD. The results of sensitivity analysis indicated the absence of heterogeneity or pleiotropy, ensuring the reliability of MR results.
CONCLUSION
Based on two-sample MR analyses, there are potential positive causal relationships between PM 2.5, PM 2.5 absorbance, and UC.
Humans
;
Mendelian Randomization Analysis
;
Particulate Matter/analysis*
;
Polymorphism, Single Nucleotide
;
Inflammatory Bowel Diseases/genetics*
;
Air Pollutants/analysis*
;
Crohn Disease/genetics*
;
Colitis, Ulcerative/genetics*
;
Genome-Wide Association Study
;
Risk Factors
;
Environmental Exposure
5.Life-Course Trajectories of Body Mass Index, Insulin Resistance, and Incident Diabetes in Chinese Adults.
Zhi Yuan NING ; Jing Lan ZHANG ; Bing Bing FAN ; Yan Lin QU ; Chang SU ; Tao ZHANG
Biomedical and Environmental Sciences 2025;38(6):706-715
OBJECTIVE:
This study aimed to explore the interplay between the life-course body mass index (BMI) trajectories and insulin resistance (IR) on incident diabetes.
METHODS:
This longitudinal cohort included 2,336 participants who had BMI repeatedly measured 3-8 times between 1989 and 2009, as well as glucose and insulin measured in 2009. BMI trajectories were identified using a latent class growth mixed model. The interplay between BMI trajectories and IR on diabetes was explored using the four-way effect decomposition method. Logistic regression and mediation models were used to estimate the interaction and mediation effects, respectively.
RESULTS:
Three distinct BMI trajectory groups were identified: low-stable ( n = 1,625), medium-increasing ( n = 613), and high-increasing ( n = 98). Both interaction and mediation effects of BMI trajectories and IR on incident diabetes were significant ( P < 0.05). The proportion of incident diabetes was higher in the IR-obesity than in the insulin-sensitivity (IS) obesity group (18.9% vs. 5.8%, P < 0.001). After adjusting for covariates, the odds ratios (95% confidence intervals) of the IR, IS-obesity, and IR-obesity groups vs. the normal group were 3.22 (2.05, 5.16), 2.05 (1.00, 3.97), and 7.98 (5.19, 12.62), respectively. IR mediated 10.7% of the total effect of BMI trajectories on incident diabetes ( P < 0.001).
CONCLUSION
We found strong interactions and weak mediation effects of IR on the relationship between life-course BMI trajectories and incident diabetes. IS-obesity is associated with a lower risk of incident diabetes than IR-obesity.
Humans
;
Insulin Resistance
;
Body Mass Index
;
Male
;
Female
;
Middle Aged
;
China/epidemiology*
;
Adult
;
Longitudinal Studies
;
Incidence
;
Diabetes Mellitus/epidemiology*
;
Aged
;
Obesity/epidemiology*
;
Diabetes Mellitus, Type 2/epidemiology*
;
East Asian People
6.Raman Spectroscopy Analysis of The Temporal Heterogeneity in Lung Cell Carcinogenesis Induced by Benzo(a)pyrene
Hai-Tao ZHOU ; Wei YAO ; Cao-Zhe CUI ; Xiao-Tong ZHOU ; Xi-Long LIANG ; Cheng-Bing QIN ; Lian-Tuan XIAO ; Zhi-Fang WU ; Si-Jin LI
Progress in Biochemistry and Biophysics 2024;51(6):1458-1470
ObjectiveTemporal heterogeneity in lung cancer presents as fluctuations in the biological characteristics, genomic mutations, proliferation rates, and chemotherapeutic responses of tumor cells over time, posing a significant barrier to effective treatment. The complexity of this temporal variance, coupled with the spatial diversity of lung cancer, presents formidable challenges for research. This article will pave the way for new avenues in lung cancer research, aiding in a deeper understanding of the temporal heterogeneity of lung cancer, thereby enhancing the cure rate for lung cancer. MethodsRaman spectroscopy emerges as a powerful tool for real-time surveillance of biomolecular composition changes in lung cancer at the cellular scale, thus shedding light on the disease’s temporal heterogeneity. In our investigation, we harnessed Raman spectroscopic microscopy alongside multivariate statistical analysis to scrutinize the biomolecular alterations in human lung epithelial cells across various timeframes after benzo(a)pyrene exposure. ResultsOur findings indicated a temporal reduction in nucleic acids, lipids, proteins, and carotenoids, coinciding with a rise in glucose concentration. These patterns suggest that benzo(a)pyrene induces structural damage to the genetic material, accelerates lipid peroxidation, disrupts protein metabolism, curtails carotenoid production, and alters glucose metabolic pathways. Employing Raman spectroscopy enabled us to monitor the biomolecular dynamics within lung cancer cells in a real-time, non-invasive, and non-destructive manner, facilitating the elucidation of pivotal molecular features. ConclusionThis research enhances the comprehension of lung cancer progression and supports the development of personalized therapeutic approaches, which may improve the clinical outcomes for patients.
7.The Quantitative Analysis of Dynamic Mechanisms Impacting Gastric Cancer Cell Proliferation via Serine/glycine Conversion
Jun-Wu FAN ; Xiao-Mei ZHU ; Zhi-Yuan FAN ; Bing-Ya LIU ; Ping AO ; Yong-Cong CHEN
Progress in Biochemistry and Biophysics 2024;51(3):658-672
ObjectiveGastric cancer (GC) seriously affects human health and life, and research has shown that it is closely related to the serine/glycine metabolism. The proliferation ability of tumor cells is greatly influenced by the metabolism of serine and glycine. The aim of this study was to investigate the molecular mechanism of serine/glycine metabolism can affect the proliferation of gastric cancer cells. MethodsIn this work, a stable metabolic dynamic model of gastric cancer cells was established via a large-scale metabolic network dynamic modeling method in terms of a potential landscape description of stochastic and non-gradient systems. Based on the regulation of the model, a quantitative analysis was conducted to investigate the dynamic mechanism of serine/glycine metabolism affecting the proliferation of gastric cancer cells. We introduced random noise to the kinetic equations of the general metabolic network, and applied stochastic kinetic decomposition to obtain the Lyapunov function of the metabolic network parameter space. A stable metabolic network was achieved by further reducing the change in the Lyapunov function tied to the stochastic fluctuations. ResultsDespite the unavailability of a large number of dynamic parameters, we were able to successfully construct a dynamic model for the metabolic network in gastric cancer cells. When extracellular serine is available, the model preferentially consumes serine. In addition, when the conversion rate of glycine to serine increases, the model significantly upregulates the steady-state fluxes of S-adenosylmethionine (SAM) and S-adenosyl homocysteine (SAH). ConclusionIn this paper, we provide evidence supporting the preferential uptake of serine by gastric cancer cells and the important role of serine/glycine conversion rate in SAM generation, which may affect the proliferation ability of gastric cancer cells by regulating the cellular methylation process. This provides a new idea and direction for targeted cancer therapy based on serine/glycine metabolism.
8.Physical exercise suppresses hepatocellular carcinoma progression by alleviating hypoxia and attenuating cancer stemness through the Akt/GSK-3β/β-catenin pathway.
Chu-Lan XIAO ; Zhi-Peng ZHONG ; Can LÜ ; Bing-Jie GUO ; Jiao-Jiao CHEN ; Tong ZHAO ; Zi-Fei YIN ; Bai LI
Journal of Integrative Medicine 2023;21(2):184-193
OBJECTIVE:
Physical exercise, a common non-drug intervention, is an important strategy in cancer treatment, including hepatocellular carcinoma (HCC). However, the mechanism remains largely unknown. Due to the importance of hypoxia and cancer stemness in the development of HCC, the present study investigated whether the anti-HCC effect of physical exercise is related to its suppression on hypoxia and cancer stemness.
METHODS:
A physical exercise intervention of swimming (30 min/d, 5 d/week, for 4 weeks) was administered to BALB/c nude mice bearing subcutaneous human HCC tumor. The anti-HCC effect of swimming was assessed in vivo by tumor weight monitoring, hematoxylin and eosin (HE) staining, and immunohistochemistry (IHC) detection of proliferating cell nuclear antigen (PCNA) and Ki67. The expression of stemness transcription factors, including Nanog homeobox (NANOG), octamer-binding transcription factor 4 (OCT-4), v-Myc avian myelocytomatosis viral oncogene homolog (C-MYC) and hypoxia-inducible factor-1α (HIF-1α), was detected using real-time reverse transcription polymerase chain reaction. A hypoxia probe was used to explore the intratumoral hypoxia status. Western blot was used to detect the expression of HIF-1α and proteins related to protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling pathway. The IHC analysis of platelet endothelial cell adhesion molecule-1 (CD31), and the immunofluorescence co-location of CD31 and desmin were used to analyze tumor blood perfusion. SMMC-7721 cells were treated with nude mice serum. The inhibition effect on cancer stemness in vitro was detected using suspension sphere experiments and the expression of stemness transcription factors. The hypoxia status was inferred by measuring the protein and mRNA levels of HIF-1α. Further, the expression of proteins related to Akt/GSK-3β/β-catenin signaling pathway was detected.
RESULTS:
Swimming significantly reduced the body weight and tumor weight in nude mice bearing HCC tumor. HE staining and IHC results showed a lower necrotic area ratio as well as fewer PCNA or Ki67 positive cells in mice receiving the swimming intervention. Swimming potently alleviated the intratumoral hypoxia, attenuated the cancer stemness, and inhibited the Akt/GSK-3β/β-catenin signaling pathway. Additionally, the desmin+/CD31+ ratio, rather than the number of CD31+ vessels, was significantly increased in swimming-treated mice. In vitro experiments showed that treating cells with the serum from the swimming intervention mice significantly reduced the formation of SMMC-7721 cell suspension sphere, as well as the mRNA expression level of stemness transcription factors. Consistent with the in vivo results, HIF-1α and Akt/GSK-3β/β-catenin signaling pathway were also inhibited in cells treated with serum from swimming group.
CONCLUSION
Swimming alleviated hypoxia and attenuated cancer stemness in HCC, through suppression of the Akt/GSK-3β/β-catenin signaling pathway. The alleviation of intratumoral hypoxia was related to the increase in blood perfusion in the tumor. Please cite this article as: Xiao CL, Zhong ZP, Lü C, Guo BJ, Chen JJ, Zhao T, Yin ZF, Li B. Physical exercise suppresses hepatocellular carcinoma progression by alleviating hypoxia and attenuating cancer stemness through the Akt/GSK-3β/β-catenin pathway. J Integr Med. 2023; 21(2): 184-193.
Humans
;
Animals
;
Mice
;
Carcinoma, Hepatocellular/drug therapy*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Proliferating Cell Nuclear Antigen/therapeutic use*
;
Mice, Nude
;
Glycogen Synthase Kinase 3 beta/genetics*
;
beta Catenin/therapeutic use*
;
Liver Neoplasms/drug therapy*
;
Desmin/therapeutic use*
;
Ki-67 Antigen
;
Cell Line, Tumor
;
Hypoxia
;
RNA, Messenger/therapeutic use*
;
Cell Proliferation
9.Lipopolysaccharides protect mesenchymal stem cell against cardiac ischemia-reperfusion injury by HMGB1/STAT3 signaling.
Jing-Yi WEN ; Hui-Xi PENG ; Dan WANG ; Zhi-Min WEN ; Yu-Tong LIU ; Jian QU ; Hong-Xuan CUI ; Yu-Ying WANG ; Yan-Lin DU ; Ting WANG ; Cong GENG ; Bing XU
Journal of Geriatric Cardiology 2023;20(11):801-812
BACKGROUND:
Myocardial ischemia-reperfusion (I/R) is a serious and irreversible injury. Bone marrow-derived mesenchymal stem cells (MSCs) is considered to be a potential therapy for I/R injury due to the paracrine effects. High-mobility group box 1 (HMGB1) is a novel mediator in MSC and regulates the response of inflammation injury. Signal Transduction and Transcription Activator 3 (STAT3) is a critical transcription factor and important for release of paracrine factors. However, the relationship between HMGB1 and STAT3 in paracrine effect of MSC remains unknown.
METHODS:
In vitro, hypoxia/reoxygenation injury model was established by AnaeroPack System and examined by Annexin V flow cytometry, CCK8 assay and morphology observation. Detection of apoptotic proteins and protein expression of HMGB1 and STAT3 by Western blot.
RESULTS:
The conditioned medium of MSCs with or without LPS pretreatment was cocultured with H9C2 cells for 24 h before hypoxia treatment and MSC showed obvious cardiomyocytes protect role, as evidence by decreased apoptosis rate and improved cells viability, and LPS pretreated MSC exhibited better protect role than untreated MSC. However, such effect was abolished in HMGB1 deficiency group, silencing HMGB1 decreased the secretion of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), insulin growth factor (IGF), cell viability, and the expression of STAT3. Furthermore, STAT3 silence attenuated the protective effect of LPS in MSC.
CONCLUSIONS
These findings suggested that LPS improved MSC-mediated cardiomyocytes protection by HMGB1/STAT3 signaling.
10.Analysis of risk factors of mortality in infants and toddlers with moderate to severe pediatric acute respiratory distress syndrome.
Bo Liang FANG ; Feng XU ; Guo Ping LU ; Xiao Xu REN ; Yu Cai ZHANG ; You Peng JIN ; Ying WANG ; Chun Feng LIU ; Yi Bing CHENG ; Qiao Zhi YANG ; Shu Fang XIAO ; Yi Yu YANG ; Xi Min HUO ; Zhi Xian LEI ; Hong Xing DANG ; Shuang LIU ; Zhi Yuan WU ; Ke Chun LI ; Su Yun QIAN ; Jian Sheng ZENG
Chinese Journal of Pediatrics 2023;61(3):216-221
Objective: To identify the risk factors in mortality of pediatric acute respiratory distress syndrome (PARDS) in pediatric intensive care unit (PICU). Methods: Second analysis of the data collected in the "efficacy of pulmonary surfactant (PS) in the treatment of children with moderate to severe PARDS" program. Retrospective case summary of the risk factors of mortality of children with moderate to severe PARDS who admitted in 14 participating tertiary PICU between December 2016 to December 2021. Differences in general condition, underlying diseases, oxygenation index, and mechanical ventilation were compared after the group was divided by survival at PICU discharge. When comparing between groups, the Mann-Whitney U test was used for measurement data, and the chi-square test was used for counting data. Receiver Operating Characteristic (ROC) curves were used to assess the accuracy of oxygen index (OI) in predicting mortality. Multivariate Logistic regression analysis was used to identify the risk factors for mortality. Results: Among 101 children with moderate to severe PARDS, 63 (62.4%) were males, 38 (37.6%) were females, aged (12±8) months. There were 23 cases in the non-survival group and 78 cases in the survival group. The combined rates of underlying diseases (52.2% (12/23) vs. 29.5% (23/78), χ2=4.04, P=0.045) and immune deficiency (30.4% (7/23) vs. 11.5% (9/78), χ2=4.76, P=0.029) in non-survival patients were significantly higher than those in survival patients, while the use of pulmonary surfactant (PS) was significantly lower (8.7% (2/23) vs. 41.0% (32/78), χ2=8.31, P=0.004). No significant differences existed in age, sex, pediatric critical illness score, etiology of PARDS, mechanical ventilation mode and fluid balance within 72 h (all P>0.05). OI on the first day (11.9(8.3, 17.1) vs.15.5(11.7, 23.0)), the second day (10.1(7.6, 16.6) vs.14.8(9.3, 26.2)) and the third day (9.2(6.6, 16.6) vs. 16.7(11.2, 31.4)) after PARDS identified were all higher in non-survival group compared to survival group (Z=-2.70, -2.52, -3.79 respectively, all P<0.05), and the improvement of OI in non-survival group was worse (0.03(-0.32, 0.31) vs. 0.32(-0.02, 0.56), Z=-2.49, P=0.013). ROC curve analysis showed that the OI on the thind day was more appropriate in predicting in-hospital mortality (area under the curve= 0.76, standard error 0.05,95%CI 0.65-0.87,P<0.001). When OI was set at 11.1, the sensitivity was 78.3% (95%CI 58.1%-90.3%), and the specificity was 60.3% (95%CI 49.2%-70.4%). Multivariate Logistic regression analysis showed that after adjusting for age, sex, pediatric critical illness score and fluid load within 72 h, no use of PS (OR=11.26, 95%CI 2.19-57.95, P=0.004), OI value on the third day (OR=7.93, 95%CI 1.51-41.69, P=0.014), and companied with immunodeficiency (OR=4.72, 95%CI 1.17-19.02, P=0.029) were independent risk factors for mortality in children with PARDS. Conclusions: The mortality of patients with moderate to severe PARDS is high, and immunodeficiency, no use of PS and OI on the third day after PARDS identified are the independent risk factors related to mortality. The OI on the third day after PARDS identified could be used to predict mortality.
Female
;
Male
;
Humans
;
Child, Preschool
;
Infant
;
Child
;
Critical Illness
;
Pulmonary Surfactants/therapeutic use*
;
Retrospective Studies
;
Risk Factors
;
Respiratory Distress Syndrome/therapy*

Result Analysis
Print
Save
E-mail