1.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Inhibitory effect of electroacupuncture on microglial activation via Notch1/Hes1 pathway in Parkinson's disease mice.
Jinxu JIANG ; Yang LIU ; Huijie FAN ; Tiansheng ZHANG ; Liran WANG ; Lei XU ; Lixia YANG ; Yunfei SONG ; Cungen MA ; Chongyao HAO ; Zhi CHAI
Chinese Acupuncture & Moxibustion 2025;45(9):1290-1298
OBJECTIVE:
To observe the effects of electroacupuncture (EA) on improving motor function and regulating microglial activation based on Notch receptor 1 (Notch1)/Hes family bHLH transcription factor 1 (Hes1) pathway in mice with Parkinson's disease (PD).
METHODS:
Thirty-six male C57BL/6 mice were randomly divided into a control group, a model group and an EA group, 12 mice in each group. PD model was established by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 7 consecutive days in the model group and the EA group. From the 1st day of modeling, EA was applied at "Baihui" (GV20) and bilateral "Shenshu" (BL23) in the EA group, with continuous wave, in frequency of 2 Hz and current of 2 mA, 15 min a time, once a day for 14 days continuously. The behavioral performance was evaluated by gait test, pole climbing test and hanging test, the number of positive cells of tyrosine hydroxylase (TH) and the co-expression positive cells of Notch1/ionized calcium binding adaptor molecule 1 (Iba-1) in the substantia nigra of midbrain was assessed by immunofluorescence, the protein expression of TH, α-synuclein (α-syn), Notch1, Hes1, Iba-1, inducible nitric oxide synthase (iNOS), Arginase-1 (ARG1), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and IL-10 was detected by Western blot, the mRNA expression of Notch1 and Hes1 was detected by real-time PCR.
RESULTS:
Compared with the control group, in the model group, the stride frequency was accelerated (P<0.001) and the stride length was shortened (P<0.001) for the four limbs, the pole climbing test time was prolonged (P<0.01) and the grip level was reduced (P<0.01); in the substantia nigra of midbrain, the number of positive cells of TH was decreased (P<0.001), the number of co-expression positive cells of Notch1/Iba-1 was increased (P<0.001), the protein expression of α-syn, Notch1, Hes1, Iba-1, iNOS, TNF-α, IL-1βand IL-6 was increased (P<0.01, P<0.05, P<0.001), the protein expression of TH, ARG1 and IL-10 was decreased (P<0.01, P<0.001), the mRNA expression of Notch1 and Hes1 was increased (P<0.01). Compared with the model group, in the EA group, the stride frequency was decelerated (P<0.001) and the stride length was increased (P<0.05, P<0.01, P<0.001) for the four limbs, the pole climbing test time was shortened (P<0.05) and the grip level was increased (P<0.05); in the substantia nigra of midbrain, the number of positive cells of TH was increased (P<0.01), the number of co-expression positive cells of Notch1/Iba-1 was decreased (P<0.001), the protein expression of α-syn, Notch1, Hes1, Iba-1, iNOS, TNF-α, IL-6 and IL-1β was decreased (P<0.05, P<0.01), the protein expression of TH, ARG1 and IL-10 was increased (P<0.05, P<0.001, P<0.01), the mRNA expression of Notch1 and Hes1 was decreased (P<0.05).
CONCLUSION
EA can improve the behavioral performance and protect the dopaminergic neurons in PD mice, its mechanism may relate to the inhibition of Notch1/Hes1-mediated neuroinflammation, thus inhibiting the microglial activation.
Animals
;
Electroacupuncture
;
Microglia/metabolism*
;
Male
;
Receptor, Notch1/metabolism*
;
Parkinson Disease/physiopathology*
;
Transcription Factor HES-1/metabolism*
;
Mice
;
Mice, Inbred C57BL
;
Humans
;
Signal Transduction
5.Clinical and Laboratory Characteristics of Streptococcus mitis Causing Bloodstream Infection in Children with Hematological Disease.
Yu-Long FAN ; Guo-Qing ZHU ; Zhi-Ying TIAN ; Yan-Xia LYU ; Zhao WANG ; Ye GUO ; Wen-Yu YANG ; Qing-Song LIN ; Xiao-Juan CHEN
Journal of Experimental Hematology 2025;33(1):286-291
OBJECTIVE:
To investigate the risk factors, clinical characteristics, and bacterial resistance of bloodstream infections caused by Streptococcus mitis in children with hematological disease, so as to provide a reference for infection control.
METHODS:
The clinical information and laboratory findings of pediatric patients complicated with blood cultures positive for Streptococcus mitis from January 2018 to December 2020 in the Institute of Hematology & Blood Diseases Hospital were searched and collected. The clinical characteristics, susceptibility factors, and antibiotic resistance of the children were retrospectively analyzed.
RESULTS:
Data analysis from 2018 to 2020 showed that the proportion of Streptococcus mitis isolated from bloodstream infections in children (≤14 years old) with hematological diseases was the highest (19.91%) and significantly higher than other bacteria, accounting for 38.64% of Gram-positive cocci, and presented as an increasing trend year by year. A total of 427 children tested positive blood cultures, including 85 children with bloodstream infections caused by Streptococcus mitis who tested after fever. Most children experienced a recurrent high fever in the early and middle stages (≤6 d) of neutropenia and persistent fever for more than 3 days. After adjusting the antibiotics according to the preliminary drug susceptibility results, the body temperature of most children (63.5%) returned to normal within 4 days. The 85 children were mainly diagnosed with acute myeloid leukemia (AML), accounting for 84.7%. The proportion of children in the neutropenia stage was 97.7%. The incidence of oral mucosal damage, lung infection, and gastrointestinal injury symptoms was 40%, 31.8%, and 27.1%, respectively. The ratio of elevated C-reactive protein (CRP) and procalcitonin was 65.9% and 9.4%, respectively. All isolated strains of Streptococcus mitis were not resistant to vancomycin and linezolid, and the resistance rate to penicillin, cefotaxime, levofloxacin, and quinupristin-dalfopristin was 10.6%, 8.2%, 9.4%, and 14.1%, respectively. None of children died due to bloodstream infection caused by Streptococcus mitis.
CONCLUSION
The infection rate of Streptococcus mitis is increasing year by year in children with hematological diseases, especially in children with AML. Among them, neutropenia and oral mucosal damage after chemotherapy are high-risk infection factors. The common clinical symptoms include persistent high fever, oral mucosal damage, and elevated CRP. Penicillin and cephalosporins have good sensitivity. Linezolid, as a highly sensitive antibiotic, can effectively control infection and shorten the course of disease.
Humans
;
Child
;
Streptococcal Infections/microbiology*
;
Retrospective Studies
;
Hematologic Diseases/complications*
;
Streptococcus mitis
;
Drug Resistance, Bacterial
;
Risk Factors
;
Microbial Sensitivity Tests
;
Anti-Bacterial Agents
;
Female
;
Male
;
Bacteremia/microbiology*
;
Child, Preschool
;
Adolescent
6.High-efficient discovering the potent anti-Notum agents from herbal medicines for combating glucocorticoid-induced osteoporosis.
Yuqing SONG ; Feng ZHANG ; Jia GUO ; Yufan FAN ; Hairong ZENG ; Mengru SUN ; Jun QIAN ; Shenglan QI ; Zihan CHEN ; Xudong JIN ; Yunqing SONG ; Tian TIAN ; Zhi QIAN ; Yao SUN ; Zhenhao TIAN ; Baoqing YU ; Guangbo GE
Acta Pharmaceutica Sinica B 2025;15(8):4174-4192
Notum, a negative feedback regulator of the Wnt signaling, has emerged as a promising target for treating glucocorticoid-induced osteoporosis (GIOP). This study showcases an efficient strategy for discovering the anti-Notum constituents from herbal medicines (HMs) as novel anti-GIOP agents. Firstly, a rapid-responding near-infrared fluorogenic substrate for Notum was rationally engineered for high-throughput identifying the anti-Notum HMs. The results showed that Bu-Gu-Zhi (BGZ), a known anti-osteoporosis herb, potently inhibited Notum in a competitive-inhibition manner. To uncover the key anti-Notum constituents in BGZ, an efficient strategy was adapted via integrating biochemical, phytochemical, computational, and pharmacological assays. Among all identified BGZ constituents, three furanocoumarins were validated as strong Notum inhibitors, while 5-methoxypsoralen (5-MP) showed the most potent anti-Notum activity and favorable safety profiles. Mechanistically, 5-MP acted as a competitive inhibitor of Notum via creating strong hydrophobic interactions with Trp128 and Phe268 in the catalytic cavity of Notum. Cellular assays showed that 5-MP remarkably promoted osteoblast differentiation and activated Wnt signaling in dexamethasone (DXMS)-challenged MC3T3-E1 osteoblasts. In dexamethasone-induced osteoporotic mice, 5-MP strongly elevated bone mineral density (BMD) and improved cancellous and cortical bone thickness. Collectively, this study constructs a high-efficient platform for discovering key anti-Notum constituents from HMs, while 5-MP emerges as a promising anti-GIOP agent.
7.Association between Per and Polyfluoroalkyl Substance and Abdominal Fat Distribution: A Trait Spectrum Exposure Pattern and Structure-Based Investigation.
Zhi LI ; Shi Lin SHAN ; Chen Yang SONG ; Cheng Zhe TAO ; Hong QIAN ; Qin YUAN ; Yan ZHANG ; Qiao Qiao XU ; Yu Feng QIN ; Yun FAN ; Chun Cheng LU
Biomedical and Environmental Sciences 2025;38(1):3-14
OBJECTIVE:
To investigate the associations between eight serum per- and polyfluoroalkyl substances (PFASs) and regional fat depots, we analyzed the data from the National Health and Nutrition Examination Survey (NHANES) 2011-2018 cycles.
METHODS:
Multiple linear regression models were developed to explore the associations between serum PFAS concentrations and six fat compositions along with a fat distribution score created by summing the concentrations of the six fat compositions. The associations between structurally grouped PFASs and fat distribution were assessed, and a prediction model was developed to estimate the ability of PFAS exposure to predict obesity risk.
RESULTS:
Among females aged 39-59 years, trunk fat mass was positively associated with perfluorooctane sulfonate (PFOS). Higher concentrations of PFOS, perfluorohexane sulfonate (PFHxS), perfluorodecanoate (PFDeA), perfluorononanoate (PFNA), and n-perfluorooctanoate (n-PFOA) were linked to greater visceral adipose tissue in this group. In men, exposure to total perfluoroalkane sulfonates (PFSAs) and long-chain PFSAs was associated with reductions in abdominal fat, while higher abdominal fat in women aged 39-59 years was associated with short-chain PFSAs. The prediction model demonstrated high accuracy, with an area under the curve (AUC) of 0.9925 for predicting obesity risk.
CONCLUSION
PFAS exposure is associated with regional fat distribution, with varying effects based on age, sex, and PFAS structure. The findings highlight the potential role of PFAS exposure in influencing fat depots and obesity risk, with significant implications for public health. The prediction model provides a highly accurate tool for assessing obesity risk related to PFAS exposure.
Humans
;
Fluorocarbons/blood*
;
Female
;
Adult
;
Middle Aged
;
Male
;
Environmental Pollutants/blood*
;
Abdominal Fat
;
Nutrition Surveys
;
Alkanesulfonic Acids/blood*
;
Obesity
;
Environmental Exposure
8.Promotion mechanism of astragaloside on axon repair and regeneration in experimental autoimmune encephalomyelitis mice
Jian-Chun LIU ; Hong-Zhen ZHANG ; Qing WANG ; Hui-Jie FAN ; Li-Juan SONG ; Zhi CHAI ; Cun-Gen MA
Medical Journal of Chinese People's Liberation Army 2024;49(8):914-921
Objective To investigate the effects of astragaloside Ⅳ(AS-Ⅳ)on axon growth inhibitory factor A(Nogo-A)and its downstream pathway protein RHO-associated coiled spiral kinase 2(ROCK2)in experimental autoimmune encephalomyelitis(EAE)mice,and to explore the mechanism by which it promotes axon repair and regeneration.Methods EAE model was induced in C57BL/6 female mice by subcutaneous injection of myelin oligodendrocyte glycoprotein 35-55(MOG35-55).Mice were randomly divided into EAE group and AS-Ⅳ group(n=8 per group).EAE group received intraperitoneal injection of PBS on the 3rd day post-immunization,while AS-Ⅳ group was administered AS-Ⅳ at a dosage of 30mg/(kg.d)once daily,0.2 ml per injection,for 25 consecutive days.On the 28th day post-immunization,the expression levels of growth-associated protein 43(GAP-43),neuronal core antigen(NeuN),microtubule associated protein 2(MAP-2),glial fibroacidic protein(GFAP),and Iba1 in the spinal cord were detected using immunofluorescence assay.Real-time fluorescence quantitative PCR(qRT-PCR)was conducted to detect mRNA expression levels of GAP-43,Nogo-A,and Nogo receptor(NgR)genes.Western blotting was utilized to determine the expression levels of GAP-43,Nogo-A,ROCK2,phosphorylated myosin phosphatase(p-MYPT1),B-lymphoblastoma-2(Bcl-2),and Bcl-2 associated X protein(Bax).Results Compared with EAE group,AS-Ⅳ treatment significantly reduced the positive cell expression rates of Iba1 microglia and GFAP astrocyte in spinal cord(P<0.01 and P<0.001,respectively),while it also increased the positive expression rates of NeuN and MAP-2(P<0.001 and P<0.05,respectively).The treatment also upregulated the expression level of anti-apoptotic factor Bcl-2(P<0.001)and downregulated the expression level of pro-apoptotic factor Bax(P<0.05),leading to an increase in Bcl-2/Bax ratio(P<0.05).Furthermore,AS-Ⅳ enhanced the expression of GAP-43 protein(P<0.05)and decreased the mRNA expression levels of neuroregeneration inhibitor Nogo receptor(NgR)and ROCK2 gene(P<0.001,P<0.05,respectively);as well as decreased the expression levels of Nogo-A,ROCK2 and p-MYPT1 proteins(P<0.05,P<0.001).Conclusion AS-Ⅳ may inhibit the activation of microglia and astrocytes and neuronal apoptosis in EAE mice by inhibiting Nogo-A and downstream pathway ROCK 2,thereby promoting the expression of GAP-43,NeuN and MAP-2,alleviating neuronal damage,and facilitating axon repair and regeneration.
9.Expert consensus on irrigation and intracanal medication in root canal therapy
Zou XIAOYING ; Zheng XIN ; Liang YUHONG ; Zhang CHENGFEI ; Fan BING ; Liang JINGPING ; Ling JUNQI ; Bian ZHUAN ; Yu QING ; Hou BENXIANG ; Chen ZHI ; Wei XI ; Qiu LIHONG ; Chen WENXIA ; He WENXI ; Xu XIN ; Meng LIUYAN ; Zhang CHEN ; Chen LIMING ; Deng SHULI ; Lei YAYAN ; Xie XIAOLI ; Wang XIAOYAN ; Yu JINHUA ; Zhao JIN ; Shen SONG ; Zhou XUEDONG ; Yue LIN
International Journal of Oral Science 2024;16(1):26-35
Chemical cleaning and disinfection are crucial steps for eliminating infection in root canal treatment.However,irrigant selection or irrigation procedures are far from clear.The vapor lock effect in the apical region has yet to be solved,impeding irrigation efficacy and resulting in residual infections and compromised treatment outcomes.Additionally,ambiguous clinical indications for root canal medication and non-standardized dressing protocols must be clarified.Inappropriate intracanal medication may present side effects and jeopardize the therapeutic outcomes.Indeed,clinicians have been aware of these concerns for years.Based on the current evidence of studies,this article reviews the properties of various irrigants and intracanal medicaments and elucidates their effectiveness and interactions.The evolution of different kinetic irrigation methods,their effects,limitations,the paradigm shift,current indications,and effective operational procedures regarding intracanal medication are also discussed.This expert consensus aims to establish the clinical operation guidelines for root canal irrigation and a position statement on intracanal medication,thus facilitating a better understanding of infection control,standardizing clinical practice,and ultimately improving the success of endodontic therapy.
10.Epidemiological trend analysis of liver cancer incidence in Luzhou City, Sichuan Province from 2016 to 2022
Rong WANG ; Ningjun REN ; Ailing LI ; Run CHEN ; Zhi LEI ; Song FAN
Shanghai Journal of Preventive Medicine 2024;36(1):47-52
ObjectiveTo analyze the epidemiological distribution and temporal trends of liver cancer incidence among Luzhou residents from 2016‒2022, and to provide a theoretical basis for improving liver cancer prevention and treatment strategies in Luzhou. MethodsData on liver cancer incidence among Luzhou residents from 2016 to 2022 were collected, and the incidence rate, age-specific incidence rate, and annual percentage change (APC) were calculated. A Joinpoint regression model was used to fit a time series segment to the monthly number of new cases in each district and county of Luzhou to explore the trend of liver cancer incidence rate. ResultsThe incidence rate of liver cancer in Luzhou increased from 22.96/105 in 2016 to 32.31/105 in 2022. The incidence rate of liver cancer in men was higher than that in women in both 2016 and 2022, and the incidence rate of liver cancer in men increased from 34.83/105 in 2016 to 47.95/105 in 2022, with an APC of 3.3%; the incidence rate of liver cancer in women increased from 10.50/105 in 2016 to 15.95/105 in 2022, with an APC of 3.0%, and the differences in the change trends were not statistically significant (P>0.05).The incidence of liver cancer was low in the age group of 0‒<40 years from 2016 to 2022 and increased with age; the incidence of liver cancer in the age group of 55 years and above was increasing at an average annual rate of 16.4%. ConclusionThe overall incidence of liver cancer in Luzhou is on the rise, and the incidence of liver cancer in men is higher than that in women. Middle-aged and elderly men are the key population for liver cancer prevention and treatment, and liver cancer prevention and treatment should be carried out in a targeted manner, taking into account regional development differences.

Result Analysis
Print
Save
E-mail