1.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
2.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.Heart Yin deficiency and cardiac fibrosis: from pathological mechanisms to therapeutic strategies.
Jia-Hui CHEN ; Si-Jing LI ; Xiao-Jiao ZHANG ; Zi-Ru LI ; Xing-Ling HE ; Xing-Ling CHEN ; Tao-Chun YE ; Zhi-Ying LIU ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(7):1987-1993
Cardiac fibrosis(CF) is a cardiac pathological process characterized by excessive deposition of extracellular matrix(ECM). When the heart is damaged by adverse stimuli, cardiac fibroblasts are activated and secrete a large amount of ECM, leading to changes in cardiac fibrosis, myocardial stiffness, and cardiac function declines and accelerating the development of heart failure. There is a close relationship between heart yin deficiency and cardiac fibrosis, which have similar pathogenic mechanisms. Heart Yin deficiency, characterized by insufficient Yin fluids, causes the heart to lose its nourishing function, which acts as the initiating factor for myocardial dystrophy. The deficiency of body fluids leads to stagnation of blood flow, resulting in blood stasis and water retention. Blood stasis and water retention accumulate in the heart, which aligns with the pathological manifestation of excessive deposition of ECM, as a tangible pathogenic factor. This is an inevitable stage of the disease process. The lingering of blood stasis combined with water retention eventually leads to the generation of heat and toxins, triggering inflammatory responses similar to heat toxins, which continuously stimulate the heart and cause the ultimate outcome of CF. Considering the syndrome of heart Yin deficiency, traditional Chinese medicine capable of nourishing Yin, activating blood, and promoting urination can reduce myocardial cell apoptosis, inhibit fibroblast activation, and lower the inflammation level, showing significant advantages in combating CF.
Humans
;
Fibrosis/drug therapy*
;
Animals
;
Yin Deficiency/metabolism*
;
Myocardium/metabolism*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
7.Protective effect of Sini Decoction in attenuating cryopreservation-induced injury of rats' sciatic nerves based on apoptosis and oxidative stress.
Kang YANG ; Jun LIU ; Lin-Lan ZHOU ; Yun-Xiao LIU ; Chun-Lin DU ; Xiao-Zhi MEI ; Ying-Ru HUANG
China Journal of Chinese Materia Medica 2025;50(5):1351-1362
Cryopreservation is the primary technique for in vitro preservation of allogeneic tissue. However, its success is often hindered by factors such as low temperature, ischemia, and hypoxia. This study investigated the potential of Sini Decoction, known for its antioxidant and anti-apoptotic properties, to reduce cryopreservation-induced injury in rats' sciatic nerves. Sini Decoction was prepared according to the Chinese Pharmacopoeia, and its cytotoxicity on Rsc96 cells was assessed by using the CCK-8 method. Sini Decoction at concentrations of 4, 8, and 16 mg·mL~(-1), termed as low-(SL), medium-(SM), and high-(SH) doses group, was used for cryopreservation of rats' sciatic nerves. A normal control(NC) group and a fresh nerve control(fresh) group were set. Flow cytometry and TUNEL staining were used to detect the apoptosis of neural tissue cells after cryopreservation. Western blot was used to detect the expression of apoptosis-related proteins(Bcl-2, Bax, caspase-3, and caspase-8) and nerve regeneration proteins(NGF and BDNF) in vitro after cryopreservation. Oxidative damage of neural tissue after cryopreservation was evaluated by measuring levels of GSH, SOD, MDA, ROS, and ATP. Cryopreserved nerves were then used for allogeneic transplantation. One week after transplantation, CD4~+ and CD8~+ fluorescent double staining assessed inflammatory cell invasion in the transplanted nerve segment, and ELISA evaluated the expression of serum inflammatory factors(IL-1, IFN-γ, and TNF-α) in recipients. Twenty weeks after transplantation, electrophysiology and NF200 neurofilament staining were used to evaluate nerve regeneration. RESULTS:: showed that Sini Decoction at concentrations of below 32 mg·mL~(-1) exhibited no cytotoxicity to Rsc96 cells. During in vitro nerve cryopreservation, Sini Decoction significantly reduced cell apoptosis, ROS, and MDA production compared to the NC group. In the SH group, the protein expression of NGF and BDNF in vitro, as well as ATP, SOD, and GSH production, were significantly increased. In the rejection reaction one week after transplantation, compared to the fresh nerve transplantation group, the SL and SM groups showed reduced CD4~+ and CD8~+ T cell invasion in the transplanted nerve segment and down-regulated IL-1, IFN-γ, and TNF-α expression in recipient serum. Twenty weeks after transplantation, the electrophysiological test results of CMAP, NCV, and NF200 neurofilament protein fluorescent staining in the SM and SH groups were superior to those in the NC and fresh groups. These findings indicate that Sini Decoction offers protective benefits in the cryopreservation of rats' sciatic nerves and holds significant potential for the in vitro preservation of tissue and organs.
Animals
;
Apoptosis/drug effects*
;
Rats
;
Oxidative Stress/drug effects*
;
Sciatic Nerve/cytology*
;
Cryopreservation
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Rats, Sprague-Dawley
;
Protective Agents/pharmacology*
8.Mechanism of Maxiong Powder in inhibiting Epac1-Piezo2 signaling pathway in medial habenular nucleus-interpeduncular nucleus of rats with neuropathic pain.
Xin-Yuan WANG ; Zhi CHEN ; Ying LIU ; Jian SUN ; Ru-Jie LI ; Zhi-Guo WANG ; Mei-Yu ZHANG
China Journal of Chinese Materia Medica 2025;50(10):2719-2729
Central sensitization(CS) is an important factor in inducing neuropathic pain(NPP), and the association between signal transduction protein 1(Epac1) and piezoelectric type mechanosensitive ion channel component 2(Piezo2) is a new and significant pathway for initiating CS. This study whether the central analgesic effect of Maxiong Powder is achieved through the synchronized regulation of the Epac1-Piezo2 signaling pathway in the medial habenular nucleus(MHb) and interpeduncular nucleus(IPN) of the brain. Dynamic in vivo microdialysis, combined with high-performance liquid chromatography-fluorescence detection(HPLC-RFC), behavioral assessments, immunohistochemistry, Western blot, and quantitative reverse transcription PCR, were employed in rats with partial sciatic nerve injury(SNI) to investigate the distribution and expression of Epac1 and Piezo2 proteins and genes in the MHb and IPN regions, and the changes in the extracellular levels of glutamate(Glu), aspartic acid(Asp), and glycine(Gly). Compared with the sham group, rats in the SNI group showed significantly reduced analgesic activity, a significant increase in cold pain sensitivity scores, and elevated Glu levels in the MHb and IPN regions. Additionally, the number of Piezo2-positive cells in these regions, as well as the expression levels of Epac1 and Piezo2 proteins and genes, were significantly increased. Compared with the SNI group, after Maxiong Powder administration, the analgesic activity in rats significantly increased, and cold pain sensitivity scores were significantly reduced. Maxiong Powder also significantly decreased the Glu content in the MHb and IPN regions and the Gly content in the MHb region, while significantly increasing the Asp content in both regions. Furthermore, Maxiong Powder significantly reduced the number of Piezo2-positive cells and lowered the protein and gene expression levels of Epac1 and Piezo2 in both brain regions. The central analgesic effect of Maxiong Powder may be related to its inhibition of Glu and Gly release in the extracellular fluid of the MHb and IPN regions, the increase of Asp levels in these regions, and the regulation of the Epac1-Piezo2 pathway through the reduction of Epac1 and Piezo2 protein and gene expression. These results provide partial scientific evidence for the clinical analgesic efficacy of Maxiong Powder and offer new ideas and approaches for the clinical treatment of NPP.
Animals
;
Neuralgia/genetics*
;
Rats
;
Signal Transduction/drug effects*
;
Male
;
Rats, Sprague-Dawley
;
Guanine Nucleotide Exchange Factors/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Habenula/drug effects*
;
Ion Channels/genetics*
;
Humans
9.Quality evaluation of Xinjiang Rehmannia glutinosa and Rehmannia glutinosa based on fingerprint and multi-component quantification combined with chemical pattern recognition.
Pan-Ying REN ; Wei ZHANG ; Xue LIU ; Juan ZHANG ; Cheng-Fu SU ; Hai-Yan GONG ; Chun-Jing YANG ; Jing-Wei LEI ; Su-Qing ZHI ; Cai-Xia XIE
China Journal of Chinese Materia Medica 2025;50(16):4630-4640
The differences in chemical quality characteristics between Xinjiang Rehmannia glutinosa and R. glutinosa were analyzed to provide a theoretical basis for the introduction and quality control of R. glutinosa. In this study, the high performance liquid chromatography(HPLC) fingerprints of 6 batches of Xinjiang R. glutinosa and 10 batches of R. glutinosa samples were established. The content of iridoid glycosides, phenylethanoid glycosides, monosaccharides, oligosaccharides, and polysaccharides in Xinjiang R. glutinosa and R. glutinosa was determined by high performance liquid chromatography-diode array detection(HPLC-DAD), high performance liquid chromatography-evaporative light scattering detection(HPLC-ELSD), and ultraviolet-visible spectroscopy(UV-Vis). The determination results were analyzed with by chemical pattern recognition and entropy weight TOPSIS method. The results showed that there were 19 common peaks in the HPLC fingerprints of the 16 batches of R. glutinosa, and catalpol, aucubin, rehmannioside D, rehmannioside A, hydroxytyrosol, leonuride, salidroside, cistanoside A, and verbascoside were identified. Hierarchical cluster analysis(HCA) and principal component analysis(PCA) showed that Qinyang R. glutinosa, Mengzhou R. glutinosa, and Xinjiang R. glutinosa were grouped into three different categories, and eight common components causing the chemical quality difference between Xinjiang R. glutinosa and R. glutinosa in Mengzhou and Qinyang of Henan province were screened out by orthogonal partial least squares discriminant analysis(OPLS-DA). The results of content determination showed that there were glucose, sucrose, raffinose, stachyose, polysaccharides, and nine glycosides in Xinjiang R. glutinosa and R. glutinosa samples, and the content of catalpol, rehmannioside A, leonuride, cistanoside A, verbascoside, sucrose, and glucose was significantly different between Xinjiang R. glutinosa and R. glutinosa. The analysis with entropy weight TOPSIS method showed that the comprehensive quality of R. glutinosa in Mengzhou and Qinyang of Henan province was better than that of Xinjiang R. glutinosa. In conclusion, the types of main chemical components of R. glutinosa and Xinjiang R. glutinosa were the same, but their content was different. The chemical quality of R. glutinosa was better than Xinjiang R. glutinosa, and other components in R. glutinosa from two producing areas and their effects need further study.
Rehmannia/classification*
;
Drugs, Chinese Herbal/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Quality Control
10.Qingda Granule Attenuates Hypertension-Induced Cardiac Damage via Regulating Renin-Angiotensin System Pathway.
Lin-Zi LONG ; Ling TAN ; Feng-Qin XU ; Wen-Wen YANG ; Hong-Zheng LI ; Jian-Gang LIU ; Ke WANG ; Zhi-Ru ZHAO ; Yue-Qi WANG ; Chao-Ju WANG ; Yi-Chao WEN ; Ming-Yan HUANG ; Hua QU ; Chang-Geng FU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(5):402-411
OBJECTIVE:
To assess the efficacy of Qingda Granule (QDG) in ameliorating hypertension-induced cardiac damage and investigate the underlying mechanisms involved.
METHODS:
Twenty spontaneously hypertensive rats (SHRs) were used to develope a hypertension-induced cardiac damage model. Another 10 Wistar Kyoto (WKY) rats were used as normotension group. Rats were administrated intragastrically QDG [0.9 g/(kg•d)] or an equivalent volume of pure water for 8 weeks. Blood pressure, histopathological changes, cardiac function, levels of oxidative stress and inflammatory response markers were measured. Furthermore, to gain insights into the potential mechanisms underlying the protective effects of QDG against hypertension-induced cardiac injury, a network pharmacology study was conducted. Predicted results were validated by Western blot, radioimmunoassay immunohistochemistry and quantitative polymerase chain reaction, respectively.
RESULTS:
The administration of QDG resulted in a significant decrease in blood pressure levels in SHRs (P<0.01). Histological examinations, including hematoxylin-eosin staining and Masson trichrome staining revealed that QDG effectively attenuated hypertension-induced cardiac damage. Furthermore, echocardiography demonstrated that QDG improved hypertension-associated cardiac dysfunction. Enzyme-linked immunosorbent assay and colorimetric method indicated that QDG significantly reduced oxidative stress and inflammatory response levels in both myocardial tissue and serum (P<0.01).
CONCLUSIONS
Both network pharmacology and experimental investigations confirmed that QDG exerted its beneficial effects in decreasing hypertension-induced cardiac damage by regulating the angiotensin converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor type 1 axis and ACE/Ang II/Ang II receptor type 2 axis.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Hypertension/pathology*
;
Renin-Angiotensin System/drug effects*
;
Rats, Inbred SHR
;
Oxidative Stress/drug effects*
;
Male
;
Rats, Inbred WKY
;
Blood Pressure/drug effects*
;
Myocardium/pathology*
;
Rats
;
Inflammation/pathology*

Result Analysis
Print
Save
E-mail