1.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Efficacy and Safety of Systemic Thrombolysis in the Treatment of Lower Extremity Fracture Complicated With Distal Deep Vein Thrombosis.
Shi-Qiang LIAO ; Shu-Ming SHI ; Qiang ZHANG ; Chuan-Yong LI ; Guang-Feng ZHENG ; Zhi-Chang PAN ; Jian-Jie RONG
Acta Academiae Medicinae Sinicae 2025;47(2):237-243
Objective To evaluate the efficacy and safety of systemic thrombolysis(ST)and standard anticoagulation(SA)in the treatment of lower extremity fracture complicated with distal deep vein thrombosis(DDVT).Methods We retrospectively analyzed the clinical data of 60 patients with lower extremity fracture complicated with DDVT treated from January 2021 to December 2023.When the lower limb venography indicated a calf thrombus burden score ≥3 points,a retrievable inferior vena cava filter(IVCF)was successfully placed in the healthy femoral vein before orthopedic surgery.The patients who received further anticoagulant or thrombolytic therapy after surgery were allocated into a ST group(n=30,urokinase ST and SA)and a SA group(n=30,only SA).The two groups were compared in terms of calf thrombus burden score,thrombus dissolution rate,IVCF placement time,IVCF retrieval rate,intercepted thrombi,hemoglobin level,platelet count,D-dimer level,and complications.Results There was no statistically significant difference in the calf thrombus burden score between the two groups before treatment(P=0.431).However,after treatment,the scores in both groups decreased(both P<0.001),with the ST group showing lower score than the SA group(P=0.002).The thrombus dissolution rate in the ST group was higher than that in the SA group(P<0.001).There was no statistically significant difference in the IVCF placement time between the two groups(P=0.359),and the IVCF retrieval rate was 100% in both groups.The ST group had fewer intercepted thrombi than the SA group(P=0.002).There was no statistically significant difference in hemoglobin level(P=0.238),platelet count(P=0.914),or D-dimer level(P=0.756)between the two groups before treatment.However,after treatment,both groups showed an increase in platelet count(both P<0.001)and a decrease in D-dimer level(both P<0.001).There was no statistically significant difference in the occurrence of complications between the two groups(P=0.704).Conclusions Both SA and ST demonstrate safety and efficacy in the treatment of lower extremity fractures complicated with DDVT,serving as valuable options for clinical application.Compared with SA,ST not only enhances the thrombus dissolution in the calf but also mitigates the risk of thrombosis associated with IVCF.
Humans
;
Venous Thrombosis/therapy*
;
Retrospective Studies
;
Thrombolytic Therapy/methods*
;
Male
;
Female
;
Middle Aged
;
Fractures, Bone/complications*
;
Lower Extremity/injuries*
;
Anticoagulants/therapeutic use*
;
Aged
;
Treatment Outcome
;
Adult
5.The lymphatic drainage of the goat heart
Chuan-Xiang MA ; Wei-Ren PAN ; Zhi-An LIU ; Yao LI ; Fan-Qiang ZENG
Anatomy & Cell Biology 2024;57(4):598-604
The detailed knowledge of the morphological structure, drainage pathways and patterns, the first tier lymph node of the cardiac lymphatic and its relationship with the circulatory system has not yet been completed. Although, the cardiac lymphatics had been described with renewed interest in past years, which was attributed to the transparent nature of lymphatic vessels that are difficult to be observed. In this study, cardiac lymphatics of the goat heart were perfused by a direct microinjecting technique with a radiopaque mixture. This demonstrated the subepicardial and subendocardial lymph capillary networks communicating with transmyocardial lymph vessels and then entering to subepicardial collecting lymph vessels that were directed toward the atrio-ventricular sulcus where they form a confluence from which the main cardiac lymph channels. We also found that: 1) the quantity and caliber of collecting lymph vessels varied in each goat heart; 2) drainage patterns of lymph vessels in the goat heart were different in individuals; 3) the first tier lymph node that each major lymph vessel drained to was different; and 4) multiple lymphatic-venous anastomosis sites have been confirmed to exist in the subepicardium of the left and right ventricles of each goat heart, which may be the morphological structure to accelerate the return of intercellular fluid to the venous system during excessive exercise of the heart. Therefore, the information may provide reference for further study in physiological and pathological conditions of the human heart.
6.The lymphatic drainage of the goat heart
Chuan-Xiang MA ; Wei-Ren PAN ; Zhi-An LIU ; Yao LI ; Fan-Qiang ZENG
Anatomy & Cell Biology 2024;57(4):598-604
The detailed knowledge of the morphological structure, drainage pathways and patterns, the first tier lymph node of the cardiac lymphatic and its relationship with the circulatory system has not yet been completed. Although, the cardiac lymphatics had been described with renewed interest in past years, which was attributed to the transparent nature of lymphatic vessels that are difficult to be observed. In this study, cardiac lymphatics of the goat heart were perfused by a direct microinjecting technique with a radiopaque mixture. This demonstrated the subepicardial and subendocardial lymph capillary networks communicating with transmyocardial lymph vessels and then entering to subepicardial collecting lymph vessels that were directed toward the atrio-ventricular sulcus where they form a confluence from which the main cardiac lymph channels. We also found that: 1) the quantity and caliber of collecting lymph vessels varied in each goat heart; 2) drainage patterns of lymph vessels in the goat heart were different in individuals; 3) the first tier lymph node that each major lymph vessel drained to was different; and 4) multiple lymphatic-venous anastomosis sites have been confirmed to exist in the subepicardium of the left and right ventricles of each goat heart, which may be the morphological structure to accelerate the return of intercellular fluid to the venous system during excessive exercise of the heart. Therefore, the information may provide reference for further study in physiological and pathological conditions of the human heart.
7.The lymphatic drainage of the goat heart
Chuan-Xiang MA ; Wei-Ren PAN ; Zhi-An LIU ; Yao LI ; Fan-Qiang ZENG
Anatomy & Cell Biology 2024;57(4):598-604
The detailed knowledge of the morphological structure, drainage pathways and patterns, the first tier lymph node of the cardiac lymphatic and its relationship with the circulatory system has not yet been completed. Although, the cardiac lymphatics had been described with renewed interest in past years, which was attributed to the transparent nature of lymphatic vessels that are difficult to be observed. In this study, cardiac lymphatics of the goat heart were perfused by a direct microinjecting technique with a radiopaque mixture. This demonstrated the subepicardial and subendocardial lymph capillary networks communicating with transmyocardial lymph vessels and then entering to subepicardial collecting lymph vessels that were directed toward the atrio-ventricular sulcus where they form a confluence from which the main cardiac lymph channels. We also found that: 1) the quantity and caliber of collecting lymph vessels varied in each goat heart; 2) drainage patterns of lymph vessels in the goat heart were different in individuals; 3) the first tier lymph node that each major lymph vessel drained to was different; and 4) multiple lymphatic-venous anastomosis sites have been confirmed to exist in the subepicardium of the left and right ventricles of each goat heart, which may be the morphological structure to accelerate the return of intercellular fluid to the venous system during excessive exercise of the heart. Therefore, the information may provide reference for further study in physiological and pathological conditions of the human heart.
8.The lymphatic drainage of the goat heart
Chuan-Xiang MA ; Wei-Ren PAN ; Zhi-An LIU ; Yao LI ; Fan-Qiang ZENG
Anatomy & Cell Biology 2024;57(4):598-604
The detailed knowledge of the morphological structure, drainage pathways and patterns, the first tier lymph node of the cardiac lymphatic and its relationship with the circulatory system has not yet been completed. Although, the cardiac lymphatics had been described with renewed interest in past years, which was attributed to the transparent nature of lymphatic vessels that are difficult to be observed. In this study, cardiac lymphatics of the goat heart were perfused by a direct microinjecting technique with a radiopaque mixture. This demonstrated the subepicardial and subendocardial lymph capillary networks communicating with transmyocardial lymph vessels and then entering to subepicardial collecting lymph vessels that were directed toward the atrio-ventricular sulcus where they form a confluence from which the main cardiac lymph channels. We also found that: 1) the quantity and caliber of collecting lymph vessels varied in each goat heart; 2) drainage patterns of lymph vessels in the goat heart were different in individuals; 3) the first tier lymph node that each major lymph vessel drained to was different; and 4) multiple lymphatic-venous anastomosis sites have been confirmed to exist in the subepicardium of the left and right ventricles of each goat heart, which may be the morphological structure to accelerate the return of intercellular fluid to the venous system during excessive exercise of the heart. Therefore, the information may provide reference for further study in physiological and pathological conditions of the human heart.
9.The lymphatic drainage of the goat heart
Chuan-Xiang MA ; Wei-Ren PAN ; Zhi-An LIU ; Yao LI ; Fan-Qiang ZENG
Anatomy & Cell Biology 2024;57(4):598-604
The detailed knowledge of the morphological structure, drainage pathways and patterns, the first tier lymph node of the cardiac lymphatic and its relationship with the circulatory system has not yet been completed. Although, the cardiac lymphatics had been described with renewed interest in past years, which was attributed to the transparent nature of lymphatic vessels that are difficult to be observed. In this study, cardiac lymphatics of the goat heart were perfused by a direct microinjecting technique with a radiopaque mixture. This demonstrated the subepicardial and subendocardial lymph capillary networks communicating with transmyocardial lymph vessels and then entering to subepicardial collecting lymph vessels that were directed toward the atrio-ventricular sulcus where they form a confluence from which the main cardiac lymph channels. We also found that: 1) the quantity and caliber of collecting lymph vessels varied in each goat heart; 2) drainage patterns of lymph vessels in the goat heart were different in individuals; 3) the first tier lymph node that each major lymph vessel drained to was different; and 4) multiple lymphatic-venous anastomosis sites have been confirmed to exist in the subepicardium of the left and right ventricles of each goat heart, which may be the morphological structure to accelerate the return of intercellular fluid to the venous system during excessive exercise of the heart. Therefore, the information may provide reference for further study in physiological and pathological conditions of the human heart.
10.Development and validation of a stromal-immune signature to predict prognosis in intrahepatic cholangiocarcinoma
Yu-Hang YE ; Hao-Yang XIN ; Jia-Li LI ; Ning LI ; Si-Yuan PAN ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Peng-Cheng WANG ; Chu-Bin LUO ; Rong-Qi SUN ; Jia FAN ; Jian ZHOU ; Zheng-Jun ZHOU ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2024;30(4):914-928
Background:
Intrahepatic cholangiocarcinoma (ICC) is a highly desmoplastic tumor with poor prognosis even after curative resection. We investigated the associations between the composition of the ICC stroma and immune cell infiltration and aimed to develop a stromal-immune signature to predict prognosis in surgically treated ICC.
Patients and methods:
We recruited 359 ICC patients and performed immunohistochemistry to detect α-smooth muscle actin (α-SMA), CD3, CD4, CD8, Foxp3, CD68, and CD66b. Aniline was used to stain collagen deposition. Survival analyses were performed to detect prognostic values of these markers. Recursive partitioning for a discrete-time survival tree was applied to define a stromal-immune signature with distinct prognostic value. We delineated an integrated stromal-immune signature based on immune cell subpopulations and stromal composition to distinguish subgroups with different recurrence-free survival (RFS) and overall survival (OS) time.
Results:
We defined four major patterns of ICC stroma composition according to the distributions of α-SMA and collagen: dormant (α-SMAlow/collagenhigh), fibrogenic (α-SMAhigh/collagenhigh), inert (α-SMAlow/collagenlow), and fibrolytic (α-SMAhigh/collagenlow). The stroma types were characterized by distinct patterns of infiltration by immune cells. We divided patients into six classes. Class I, characterized by high CD8 expression and dormant stroma, displayed the longest RFS and OS, whereas Class VI, characterized by low CD8 expression and high CD66b expression, displayed the shortest RFS and OS. The integrated stromal-immune signature was consolidated in a validation cohort.
Conclusion
We developed and validated a stromal-immune signature to predict prognosis in surgically treated ICC. These findings provide new insights into the stromal-immune response to ICC.

Result Analysis
Print
Save
E-mail