1.Cross lag analysis of cumulative ecological risk and future orientation with health risk behaviors among higher vocational college students
ZENG Zhi, FU Gang, LI Ke, WANG Meifeng, WU Lian, ZHANG Tiancheng, ZHANG Fulan
Chinese Journal of School Health 2025;46(3):348-352
Objective:
To explore the causal link of cumulative ecological risk and future orientation with health risk behaviors among higher vocational college students, so as to provide reference for reducing and preventing health risk behaviors among higher vocational college students.
Methods:
A longitudinal follow up study was conducted on 612 students using convenience sampling from 2 vocational colleges in Hunan Province. The Cumulative Ecological Risk Scale, Future Orientation Scale, and Health Risk Behavior Scale were used during three follow up visits (T1: September 2022, T2: June 2023, T3: March 2024), and a cross lagged panel model was constructed to examine the longitudinal causal relationship of cumulative ecological risk, future orientation and health risk behaviors. Analysis of longitudinal intermediary effect between variables by Bootstrap.
Results:
The cumulative ecological risk scores of T1, T2 and T3 among higher vocational college students were (2.94±1.44,2.99±1.63,3.02±1.54), future orientation scores (40.49±4.71,41.51±5.72,41.06±4.35) and health risk behavior scores (3.73±2.01,3.49±2.00,3.23±2.00). The results of repeated measures ANOVA showed that the future orientation score of T2 was higher than that of T1, and the main effect of measurement time was statistically significant ( F=5.09,P<0.01,η 2=0.02). The health risk behavior score of T1 was higher than that of T2, and the health risk behavior score of T2 was higher than that of T3, and the main effect of measurement time was statistically significant ( F=10.12,P<0.01,η 2=0.03).The cross lagged model showed good adaptability, with χ 2/df =7.20 ( P <0.01), relative fitting indicators GFI=0.98, CFI=0.99, TLI=0.96, IFI=0.99, NFI =0.99, and absolute fitting indicator RMSEA =0.06. Among them, the T1, T2 cumulative ecological risk showed negatively predictive effects on T2, T3 future orientation ( β =-0.24, -0.47 ), and T1, T2 cumulative ecological risk positively predicted T2, T3 health risk behavior ( β =0.20, 0.24), while T1, T2 future orientation negatively predicted T2, T3 health risk behavior ( β =-0.25, -0.18) ( P <0.01). Bootstrap test analysis found that T2 future orientation had a longitudinal mediating effect ( β=0.04, P <0.01) on the T1 cumulative ecological risk and T3 health risk behavior.
Conclusions
The accumulation of ecological risk among higher vocational college students can positively predict health risk behaviors, while future orientation can negatively predict healthrisk behaviors. Moreover, future orientation plays a longitudinal mediating role between accumulated ecological risks and health risk behaviors.
3.Zedoarondiol Inhibits Neovascularization in Atherosclerotic Plaques of ApoE-/- Mice by Reducing Platelet Exosomes-Derived MiR-let-7a.
Bei-Li XIE ; Bo-Ce SONG ; Ming-Wang LIU ; Wei WEN ; Yu-Xin YAN ; Meng-Jie GAO ; Lu-Lian JIANG ; Zhi-Die JIN ; Lin YANG ; Jian-Gang LIU ; Da-Zhuo SHI ; Fu-Hai ZHAO
Chinese journal of integrative medicine 2025;31(3):228-239
OBJECTIVE:
To investigate the effect of zedoarondiol on neovascularization of atherosclerotic (AS) plaque by exosomes experiment.
METHODS:
ApoE-/- mice were fed with high-fat diet to establish AS model and treated with high- and low-dose (10, 5 mg/kg daily) of zedoarondiol, respectively. After 14 weeks, the expressions of anti-angiogenic protein thrombospondin 1 (THBS-1) and its receptor CD36 in plaques, as well as platelet activation rate and exosome-derived miR-let-7a were detected. Then, zedoarondiol was used to intervene in platelets in vitro, and miR-let-7a was detected in platelet-derived exosomes (Pexo). Finally, human umbilical vein endothelial cells (HUVECs) were transfected with miR-let-7a mimics and treated with Pexo to observe the effect of miR-let-7a in Pexo on tube formation.
RESULTS:
Animal experiments showed that after treating with zedoarondiol, the neovascularization density in plaques of AS mice was significantly reduced, THBS-1 and CD36 increased, the platelet activation rate was markedly reduced, and the miR-let-7a level in Pexo was reduced (P<0.01). In vitro experiments, the platelet activation rate and miR-let-7a levels in Pexo were significantly reduced after zedoarondiol's intervention. Cell experiments showed that after Pexo's intervention, the tube length increased, and the transfection of miR-let-7a minics further increased the tube length of cells, while reducing the expressions of THBS-1 and CD36.
CONCLUSION
Zedoarondiol has the effect of inhibiting neovascularization within plaque in AS mice, and its mechanism may be potentially related to inhibiting platelet activation and reducing the Pexo-derived miRNA-let-7a level.
Animals
;
MicroRNAs/genetics*
;
Exosomes/drug effects*
;
Plaque, Atherosclerotic/genetics*
;
Neovascularization, Pathologic/genetics*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Humans
;
Blood Platelets/drug effects*
;
Apolipoproteins E/deficiency*
;
Thrombospondin 1/metabolism*
;
CD36 Antigens/metabolism*
;
Platelet Activation/drug effects*
;
Male
;
Mice
;
Mice, Inbred C57BL
4.Vascular Protection of Neferine on Attenuating Angiotensin II-Induced Blood Pressure Elevation by Integrated Network Pharmacology Analysis and RNA-Sequencing Approach.
A-Ling SHEN ; Xiu-Li ZHANG ; Zhi GUO ; Mei-Zhu WU ; Ying CHENG ; Da-Wei LIAN ; Chang-Geng FU ; Jun PENG ; Min YU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(8):694-706
OBJECTIVE:
To explore the functional roles and underlying mechanisms of neferine in the context of angiotensin II (Ang II)-induced hypertension and vascular dysfunction.
METHODS:
Male mice were infused with Ang II to induce hypertension and randomly divided into treatment groups receiving neferine or a control vehicle based on baseline blood pressure using a random number table method. The hypertensive mouse model was constructed by infusing Ang II via a micro-osmotic pump (500 ng/kg per minute), and neferine (0.1, 1, or 10 mg/kg), valsartan (10 mg/kg), or double distilled water was administered intragastrically once daily for 6 weeks. A non-invasive blood pressure system, ultrasound, and hematoxylin and eosin staining were performed to assess blood pressure and vascular changes. RNA sequencing and network pharmacology were employed to identify differentially expressed transcripts (DETs) and pathways. Vascular ring tension assay was used to test vascular function. A7R5 cells were incubated with neferine for 24 h and then treated with Ang II to record the real-time Ca2+ concentration by confocal microscope. Immunohistochemistry (IHC) and Western blot were used to evaluate vasorelaxation, calcium, and the extracellular signal-regulated kinase (ERK)1/2 pathway.
RESULTS:
Neferine treatment effectively mitigated the elevation in blood pressure, pulse wave velocity, aortic thickening in the abdominal aorta of Ang II-infused mice (P<0.05). RNA sequencing and network pharmacology analysis identified 355 DETs that were significantly reversed by neferine treatment, along with 25 potential target genes, which were further enriched in multiple pathways and biological processes, such as ERK1 and ERK2 cascade regulation, calcium pathway, and vascular smooth muscle contraction. Further investigation revealed that neferine treatment enhanced vasorelaxation and reduced Ca2+-dependent contraction of abdominal aortic rings, independent of endothelium function (P<0.05). The underlying mechanisms were mediated, at least in part, via suppression of receptor-operated channels, store-operated channels, or voltage-operated calcium channels. Neferine pre-treatment demonstrated a reduction in intracellular Ca2+ release in Ang II stimulated A7R5 cells. IHC staining and Western blot confirmed that neferine treatment effectively attenuated the upregulation of p-ERK1/2 both in vivo and in vitro, which was similar with treatment of ERK1/2 inhibitor PD98059 (P<0.05).
CONCLUSIONS
Neferine remarkably alleviates Ang II-induced elevation of blood pressure, vascular dysfunction, and pathological changes in the abdominal aorta. This beneficial effect is mediated by the modulation of multiple pathways, including calcium and ERK1/2 pathways.
Animals
;
Angiotensin II
;
Male
;
Benzylisoquinolines/therapeutic use*
;
Network Pharmacology
;
Blood Pressure/drug effects*
;
Sequence Analysis, RNA
;
Mice
;
Hypertension/chemically induced*
;
Mice, Inbred C57BL
;
Calcium/metabolism*
6.Intramedullary nailing for irreducible spiral subtrochanteric fractures: A comparison of cerclage and non-cerclage wiring
Yan-Hui GUO ; Zhan-Lin SONG ; Hua-Yong ZHENG ; Jie GAO ; Yi-Yun LIN ; Zhi LIU ; Lian-Hua LI
Chinese Journal of Traumatology 2024;27(5):305-310
Purpose::Intramedullary nailing is the preferred internal fixation technique for the treatment of subtrochanteric fractures because of its biomechanical advantages. However, no definitive conclusion has been reached regarding whether combined cable cerclage is required during intramedullary nailing treatment. This study is performed to compare the clinical effects of intramedullary nailing with cerclage and non-cerclage wiring in the treatment of irreducible spiral subtrochanteric fractures.Methods::Patients with subtrochanteric fractures admitted to our center from January 2013 to December 2021 were retrospectively analyzed. The patients were enrolled in the case-control study according to the inclusion and exclusion criteria and divided into the non-cerclage group and the cerclage group. The patients' clinical data, including the operative time, intraoperative blood loss, hospital stay, reoperation rate, fracture union time, and Harris hip score, were compared between these 2 groups. Categorical variables were compared using Chi-square or Fisher's exact test. Continuous variables with normal distribution were presented as mean ± standard deviation and analyzed with Student's t-test. Nonnormally distributed variables were expressed as median (Q 1, Q 3) and assessed using the Mann-Whitney test. A p < 0.05 was considered significant. Results::In total, 69 patients were included in the study (35 patients in the non-cerclage group and 34 patients in the cerclage group). The baseline data of the 2 groups were comparable. There were no significant difference in the length of hospital stay (z = -0.391, p = 0.696), operative time (z = -1.289, p = 0.197), or intraoperative blood loss (z = -1.321, p = 0.186). However, compared with non-cerclage group, the fracture union time was shorter (z = -5.587, p < 0.001), the rate of nonunion was lower (χ 2= 6.030, p = 0.03), the anatomical reduction rate was higher (χ 2= 5.449, p = 0.03), and the Harris hip score was higher (z =-2.99, p = 0.003) in the cerclage group, all with statistically significant differences. Conclusions::Intramedullary nailing combined with cable cerclage wiring is a safe and reliable technique for the treatment of irreducible subtrochanteric fractures. This technique can improve the reduction effect, increase the stability of fracture fixation, shorten the fracture union time, reduce the occurrence of nonunion, and contribute to the recovery of hip joint function.
7.Cellular Temperature Imaging Technology Based on Single-molecule Quantum Coherent Modulation
Hai-Tao ZHOU ; Cheng-Bing QIN ; Lian-Tuan XIAO ; Zhi-Fang WU ; Si-Jin LI
Progress in Biochemistry and Biophysics 2024;51(5):1215-1220
ObjectiveCellular temperature imaging can assist scientists in studying and comprehending the temperature distribution within cells, revealing critical information about cellular metabolism and biochemical processes. Currently, cell temperature imaging techniques based on fluorescent temperature probes suffer from limitations such as low temperature resolution and a limited measurement range. This paper aims to develop a single-cell temperature imaging and real-time monitoring technique by leveraging the temperature-dependent properties of single-molecule quantum coherence processes. MethodsUsing femtosecond pulse lasers, we prepare delayed and phase-adjustable pairs of femtosecond pulses. These modulated pulse pairs excite fluorescent single molecules labeled within cells through a microscopic system, followed by the collection and recording of the arrival time of each fluorescent photon. By defining the quantum coherence visibility (V) of single molecules in relation to the surrounding environmental temperature, a correspondence between V and environmental temperature is established. By modulating and demodulating the arrival times of fluorescent photons, we obtain the local temperature of single molecules. Combined with scanning imaging, we finally achieve temperature imaging and real-time detection of cells. ResultsThis method achieves high precision (temperature resolution<0.1°C) and a wide temperature range (10-50°C) for temperature imaging and measurement, and it enables the observation of temperature changes related to individual cell metabolism. ConclusionThis research contributes to a deeper understanding of cellular metabolism, protein function, and disease mechanisms, providing a valuable tool for biomedical research.
8.Raman Spectroscopy Analysis of The Temporal Heterogeneity in Lung Cell Carcinogenesis Induced by Benzo(a)pyrene
Hai-Tao ZHOU ; Wei YAO ; Cao-Zhe CUI ; Xiao-Tong ZHOU ; Xi-Long LIANG ; Cheng-Bing QIN ; Lian-Tuan XIAO ; Zhi-Fang WU ; Si-Jin LI
Progress in Biochemistry and Biophysics 2024;51(6):1458-1470
ObjectiveTemporal heterogeneity in lung cancer presents as fluctuations in the biological characteristics, genomic mutations, proliferation rates, and chemotherapeutic responses of tumor cells over time, posing a significant barrier to effective treatment. The complexity of this temporal variance, coupled with the spatial diversity of lung cancer, presents formidable challenges for research. This article will pave the way for new avenues in lung cancer research, aiding in a deeper understanding of the temporal heterogeneity of lung cancer, thereby enhancing the cure rate for lung cancer. MethodsRaman spectroscopy emerges as a powerful tool for real-time surveillance of biomolecular composition changes in lung cancer at the cellular scale, thus shedding light on the disease’s temporal heterogeneity. In our investigation, we harnessed Raman spectroscopic microscopy alongside multivariate statistical analysis to scrutinize the biomolecular alterations in human lung epithelial cells across various timeframes after benzo(a)pyrene exposure. ResultsOur findings indicated a temporal reduction in nucleic acids, lipids, proteins, and carotenoids, coinciding with a rise in glucose concentration. These patterns suggest that benzo(a)pyrene induces structural damage to the genetic material, accelerates lipid peroxidation, disrupts protein metabolism, curtails carotenoid production, and alters glucose metabolic pathways. Employing Raman spectroscopy enabled us to monitor the biomolecular dynamics within lung cancer cells in a real-time, non-invasive, and non-destructive manner, facilitating the elucidation of pivotal molecular features. ConclusionThis research enhances the comprehension of lung cancer progression and supports the development of personalized therapeutic approaches, which may improve the clinical outcomes for patients.
9.RNA SNP Detection Method With Improved Specificity Based on Dual-competitive-padlock-probe
Qin-Qin ZHANG ; Jin-Ze LI ; Wei ZHANG ; Chuan-Yu LI ; Zhi-Qi ZHANG ; Jia YAO ; Hong DU ; Lian-Qun ZHOU ; Zhen GUO
Progress in Biochemistry and Biophysics 2024;51(11):3021-3033
ObjectiveThe detection of RNA single nucleotide polymorphism (SNP) is of great importance due to their association with protein expression related to various diseases and drug responses. At present, splintR ligase-assisted methods are important approaches for RNA direct detection, but its specificity will be limited when the fidelity of ligases is not ideal. The aim of this study was to create a method to improve the specificity of splintR ligase for RNA detection. MethodsIn this study, a dual-competitive-padlock-probe (DCPLP) assay without the need for additional enzymes or reactions is proposed to improve specificity of splintR ligase ligation. To verify the method, we employed dual competitive padlock probe-mediated rolling circle amplification (DCPLP-RCA) to genotype the CYP2C9 gene. ResultsThe specificity was well improved through the competition and strand displacement of dual padlock probe, with an 83.26% reduction in nonspecific signal. By detecting synthetic RNA samples, the method demonstrated a dynamic detection range of 10 pmol/L-1 nmol/L. Furthermore, clinical samples were applied to the method to evaluate its performance, and the genotyping results were consistent with those obtained using the qPCR method. ConclusionThis study has successfully established a highly specific direct RNA SNP detection method, and provided a novel avenue for accurate identification of various types of RNAs.
10.Hydrogen sulfide and neuroinflammation-mediated neurodegenerative diseases
Yu-Lian SHUI ; Zhi-Qiong REN ; Yi-Jie HE ; Bin-Bin CHEN ; Jia HONG ; Ke-Ting LIU ; Li XIAO
Journal of Regional Anatomy and Operative Surgery 2024;33(6):551-554
Hydrogen sulfide,as a third gas signal molecule and neurotransmitter,can play a neuroprotective role by anti-oxidative stress,anti-inflammatory response,metabolic inhibition and other mechanisms.It is of great significance for the occurrence and development of neurodegenerative diseases including Alzheimer's disease(AD)and Parkinson's disease(PD)mediated by neuroinflammation.This article reviews the research progress of hydrogen sulfide and neuroinflammation and its mediated neurodegenerative diseases,so as to provide new ideas for the treatment of neurodegenerative diseases.


Result Analysis
Print
Save
E-mail