1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.The Functional Diversity and Regulatory Mechanism of Clathrin Plaques
Yi-Ge ZHAO ; Zhao-Hong JIANG ; Qian-Yi ZHOU ; Zhi-Ming CHEN
Progress in Biochemistry and Biophysics 2025;52(8):1958-1971
Clathrin-mediated endocytosis (CME) is a critical process by which cells internalize macromolecular substances and initiate vesicle trafficking, serving as the foundation for many cellular activities. Central to this process are clathrin-coated structures (CCSs), which consist of clathrin-coated pits (CCPs) and clathrin plaques. While clathrin-coated pits are well-established in the study of endocytosis, clathrin plaques represent a more recently discovered but equally important component of this system. These plaques are large, flat, and extended clathrin-coated assemblies found on the cytoplasmic membrane. They are distinct from the more typical clathrin-coated pits in terms of their morphology, larger surface area, and longer lifespan. Recent research has revealed that clathrin plaques play roles that go far beyond endocytosis, contributing to diverse cellular processes such as cellular adhesion, mechanosensing, migration, and pathogen invasion. Unlike traditional clathrin-coated pits, which are transient and dynamic structures involved primarily in the internalization of molecules, clathrin plaques are more stable and extensive, often persisting for extended periods. Their extended lifespan suggests that they serve functions beyond the typical endocytic role, making them integral to various cellular processes. For instance, clathrin plaques are involved in the regulation of intercellular adhesion, allowing cells to better adhere to one another or to the extracellular matrix, which is crucial for tissue formation and maintenance. Furthermore, clathrin plaques act as mechanosensitive hubs, enabling the cell to sense and respond to mechanical stress, a feature that is essential for processes like migration, tissue remodeling, and even cancer progression. Recent discoveries have also highlighted the role of clathrin plaques in cellular signaling. These plaques can serve as scaffolds for signaling molecules, orchestrating the activation of various pathways that govern cellular behavior. For example, the recruitment of actin-binding proteins such as F-actin and vinculin to clathrin plaques can influence cytoskeletal dynamics, helping cells adapt to mechanical changes in their environment. This recruitment also plays a pivotal role in regulating cellular migration, which is crucial for developmental processes. Additionally, clathrin plaques influence receptor-mediated signal transduction by acting as platforms for the assembly of signaling complexes, thereby affecting processes such as growth factor signaling and cellular responses to extracellular stimuli. Despite the growing body of evidence that supports the involvement of clathrin plaques in a wide array of cellular functions, much remains unknown about the precise molecular mechanisms that govern their formation, maintenance, and turnover. For example, the factors that regulate the recruitment of clathrin and other coat proteins to form plaques, as well as the signaling molecules that coordinate plaque dynamics, remain areas of active research. Furthermore, the complex interplay between clathrin plaques and other cellular systems, such as the actin cytoskeleton and integrin-based adhesion complexes, needs further exploration. Studies have shown that clathrin plaques can respond to mechanical forces, with recent findings indicating that they act as mechanosensitive structures that help the cell adapt to changing mechanical environments. This ability underscores the multifunctional nature of clathrin plaques, which, in addition to their role in endocytosis, are involved in cellular processes such as mechanotransduction and adhesion signaling. In summary, clathrin plaques represent a dynamic and versatile component of clathrin-mediated endocytosis. They play an integral role not only in the internalization of macromolecular cargo but also in regulating cellular adhesion, migration, and signal transduction. While much has been learned about their structural and functional properties, significant questions remain regarding the molecular mechanisms that regulate their formation and their broader role in cellular physiology. This review highlights the evolving understanding of clathrin plaques, emphasizing their importance in both endocytosis and a wide range of other cellular functions. Future research is needed to fully elucidate the mechanisms by which clathrin plaques contribute to cellular processes and to better understand their implications for diseases, including cancer and tissue remodeling. Ultimately, clathrin plaques are emerging as crucial hubs that integrate mechanical, biochemical, and signaling inputs, providing new insights into cellular function and the regulation of complex cellular behaviors.
3.Effectiveness of autologous platelet-rich plasma for blood conservation and its prognostic impact in patients with type A aortic dissection
Qian ZHENG ; Shoumei CHEN ; Ming XIE ; Shenshen ZHI ; Kun LIU ; Ting JIANG
Chinese Journal of Blood Transfusion 2025;38(8):1035-1042
Objective: To investigate the effects of autologous platelet-rich plasma (aPRP) collected using a continuous blood cell separator on blood conservation and prognosis in patients with type A aortic dissection. Methods: The clinical data of patients who underwent emergency aortic replacement for acute type A aortic dissection at our hospital from January 2020 to December 2023 were respectively analyzed. Patients were divided into two groups based on whether they received aPRP collection before surgery for subsequent reinfusion: the aPRP group (n=32) and the control group (n=35). The volume of aPRP collected and the platelet concentration in the aPRP were recorded. The volumes of allogeneic blood and blood products transfused, and the associated costs during hospitalization were compared between two groups. Intraoperative blood loss, perioperative laboratory parameter changes, 24-hour postoperative drainage volume, duration of ICU stay and mechanical ventilation, length of hospital stay, and mortality rate of the two groups were also compared. Results: The platelet concentration in aPRP was (491.5±85.4)×10
/L, accounting for (24.1±9.6)% of the patient's total platelet count. The volume of aPRP collected accounted for (23.0±6.3)% of the patient's total plasma volume. Compared with the control group, the aPRP group demonstrated significantly reduced transfusion volumes of allogeneic red blood cells, plasma, and platelets (P<0.05), along with significantly lower blood-related costs during hospitalization (P<0.05). Postoperative coagulation parameters (APTT, PT, INR, and TEG) were significantly improved (P<0.05), and platelet counts were markedly increased (P<0.05) in aPRP group as compared with the control group. No statistically significant differences were observed in postoperative use of prothrombin complex concentrate and fibrinogen between the two groups. Similarly, there were no significant differences in postoperative 24-hour drainage volume, 24-hour extubation rate, ICU length of stay, duration of mechanical ventilation, or total hospital length of stay. The incidence of complications and mortality did not differ significantly between the two groups. Conclusion: The administration of aPRP significantly reduces the requirement for perioperative allogeneic blood transfusion in patients undergoing surgery for type A aortic dissection. Furthermore, it enhances coagulation function and reduces associated transfusion costs, thereby establishing itself as an effective and safe strategy for blood conservation.
4.Exploring mechanism of Banxia Baizhu Tianma Decoction in intervening methamphetamine addiction from PI3K-Akt pathway and cell verification based on network pharmacology and cell verification
Han-Cheng LI ; Zhao JIANG ; Yang-Kai WU ; Jie-Yu LI ; Yi-Ling CHEN ; Ming ZENG ; Zhi-Xian MO
Chinese Pharmacological Bulletin 2024;40(10):1971-1978
Aim To investigate the mechanism of Banxia Baizhu Tianma Decoction(BBTD)in interfer-ing methamphetamine(MA)addiction using network pharmacology.Methods The mechanism of BBTD intervention in MA addiction was analyzed using net-work pharmacology,and MA-dependent SH-SY5Y cell model was further constructed to observe the effects of BBTD on cell model and PI3K-Akt pathway.Results A total of 88 active ingredients and 583 potential tar-gets of BBTD were screened.KEGG analysis showed that BBTD might intervene in MA addiction through PI3K-Akt,cAMP and other pathways.The molecular docking results showed that key active ingredients ex-hibited strong binding ability with core targets of PI3K-Akt pathway.In vitro experiments showed that MA-de-pendent model cells had shorter synapses,tended to be elliptical in morphology,had blurred cell boundaries,showed typical cell damage morphology,and had high intracellular expression of cAMP(P<0.01)and low expression of 5-HT(P<0.05).BBTD intervention could counteract the above morphology,cAMP,and 5-HT changes,suggesting that it had therapeutic effects on MA-dependent model cells.Western blot showed that MA modeling elevated the p-PI3K/PI3K(P<0.05)and p-Akt/Akt(P<0.01);BBTD inter-vention decreased their relative expression.Conclu-sions Gastrodin and other active ingredients in BBTD have therapeutic effects on MA addiction,and the mechanism may be related to regulation of PI3K-Akt pathway relevant targets.
5.The neuroprotective effect of Wenfei Jiangzhuo formula on vascular dementia model rats based on regulation of mitochondrial homeostasis by PGAM5-Drp1 axis
Ding ZHANG ; Zhi-Han HU ; Chun-Ying SUN ; Xiao-Dong ZHU ; Fang-Cun LI ; Ming-He JIANG ; Hong-Ling QIN ; Wei CHEN ; Yue-Qiang HU
Chinese Pharmacological Bulletin 2024;40(11):2158-2164
Aim To observe the effects of Wenfei Jiangzhuo formula(WFJZF)on rats with vascular de-mentia and investigate its possible mechanism of ac-tion.Methods Thirty-six healthy male SD rats were randomly divided into the sham group,model group,donepezil group,and low-dose,medium-dose and high-dose groups of Wenfei Jiangzhuo formula,with six rats per group.Except for the sham group,the other groups were prepared as VaD models,and each group was gavaged with the corresponding drugs after suc-cessful modeling,and tests were performed after three weeks of treatment.Behavioral,hippocampal CA1 area morphology,neural dendrites and mitochondrial chan-ges were observed in all groups of rats,and phospho-glycerate mutase 5(PGAM5),dynamics-related pro-teins1(Drp1),opticatrophyprotein-1(OPA1),and other proteins were detected in each group.Results Compared with the sham group,rats in the model group and each intervention group had prolonged es-cape latency(P<0.05),a shorter number of travers-als across the platforms(P<0.05),a sparse morphol-ogy of hippocampal neurons,a reduction in the number of secondary dendritic spines,and a rupture of the out-er membrane of the mitochondria;the expression of the PGAM5 and Drp1 proteins in hippocampal tissues was elevated(P<0.05),and the expression of the OPA1 and Mfn1/2 protein expression decreased(P<0.05);compared with the model group,donepezil group and Wenfei Jiangzhuo formula high-dose group of rats had shorter evasion latency(P<0.05),increased number of times to traverse the platform(P<0.05),increased number of hippocampal neurons,tightly packed,more secondary dendritic structures,and reduced mitochon-drial damage;the expression of PGAM5 and Drp1 pro-teins was reduced(P<0.05),and the expression of OPA1 and Mfn1/2 proteins was elevated(P<0.05).Conclusions Wenfei Jiangzhuo formula can regulate the PGAM5-Drp1 signaling axis to improve the balance of mitochondrial homeostasis,thus improving the cog-nitive condition of the brain and exerting cerebroprotec-tive effects.
6.Application of China-made Toumai? Robot in laparoscopic radical prostatectomy
Zhi-Feng WEI ; Yu-Hao CHEN ; Ze-Peng ZHU ; Qi JIANG ; Yu XIONG ; Feng-Feng LU ; Zhen-Qian SONG ; Bin JIANG ; Xiao-Feng ZHU ; Tian-Hao FENG ; Xiao-Feng XU ; Gang YANG ; Wu WEI ; Ai-Bing YAO ; Jing-Ping GE
National Journal of Andrology 2024;30(8):696-700
Objective:To evaluate the safety and efficiency of China-made Toumai Robot-assisted laparoscopic radical prosta-tectomy(LRP).Methods:This study included 40 cases of PCa treated from January 2023 to May 2023 by robot-assisted LRP with preservation of the bladder neck and maximal functional urethral length,15 cases with the assistance of Toumai Robot(the TMR group)and the other 25 with the assistance of da Vinci Robot as controls(the DVR group).We recorded the docking time,laparo-scopic surgery time,vesico-urethral anastomosis time,intraoperative blood loss and postoperative urinary continence,and compared them between the two groups.Results:Operations were successfully completed in all the cases.No statistically significant differ-ences were observed between the TMR and DVR groups in the docking time(6 min vs 5 min,P>0.05)or intraoperative blood loss(200 ml vs 150 ml,P>0.05).The TMR group,compared with the DVR group,showed a significantly longer median laparoscopic surgery time(146 min vs 130 min,P<0.05)and median vesico-urethral anastomosis time(19 min vs 16 min,P<0.05).There were no statistically significant differences between the TMR and DVR groups in the rates of urinary continence recovery immediately af-ter surgery(60.0%[9/15]vs 64.0%[16/25],P>0.05)or at 1 month(80.0%[12/15])vs(76.0%[19/25],P>0.05),3 months(93.3%[14/15])vs(92.0%[23/25],P>0.05)and 6 months postoperatively(100%[15/15])vs(96%[24/25],P>0.05).Conclusion:China-made Toumai? Robot surgical system is safe and reliable for laparoscopic radical prosta-tectomy,with satisfactory postoperative recovery of urinary continence.
7.Ameliorative effects of praeruptorin A from Suhuang antitussive capsules on cough variant asthma
Zi-Yao ZHAO ; Hong JIANG ; Yong-Yu OU ; Xiao-Yuan CHEN ; Nan WU ; Zi-Yu BAI ; Zhi-Hao ZHANG ; Ning-Hua TAN
Chinese Traditional Patent Medicine 2024;46(9):2904-2914
AIM To explore the effects of praeruptorin A from Suhuang antitussive capsules on cough variant asthma(CVA).METHODS The rats were randomly divided into the normal group,the model group,the dexamethasone group(0.5 mg/kg),the Suhuang antitussive capsules group(7 g/kg)and the low,medium and high dose praeruptorin A groups(15,30 and 60 mg/kg).The rat model of CVA was established by intraperitoneal injection of sensitizer(1 mg/mL ovalbumin and 10 mg/mL aluminum hydroxide)and aerosol inhalation of 1%ovalbumin followed by the corresponding dosing of drugs by gavage initiated on the 14th day.Another 14 days later,the rats had their pathological pulmonary changes observed by HE,Masson and PAS stainings;their number of inflammatory cells in bronchoalveolar lavage fluid(BALF)detected by hematology analyzer;and their levels of IL-4,IL-5,IL-13 and MUC5AC in BALF detected by ELISA.The RAW264.7 cell inflammatory model induced by lipopolysaccharide(LPS)was treated with 4,8,16 μmol/L praeruptorin A or 0.25 mg/mL Suhuang antitussive capsules,respectively.And the cells had their NO level detected by Griess method,and their ROS expression observed using fluorescence microscopy.The detections of the pulmonary and cellular mRNA expressions of IL-6,IL-1β,COX-2,iNOS and PPAR-γ by RT-qPCR;and the protein expressions of p-P65,P65,p-IκBα,IκBα,NLRP3,caspase-1(p20)and IL-1β by Western blot were conducted in both the cells and the rats.RESULTS The in vivo result showed that praeruptorin A reduced the cough frequency(P<0.01);prolonged the cough latency(P<0.05,P<0.01);reduced the number of eosinophils and neutrophils in BALF(P<0.05,P<0.01);decreased the levels of IL-4,IL-5,IL-13 and MUC5AC in BALF and the pulmonary mRNA expressions of IL-6,IL-1β,COX-2 and iNOS(P<0.05,P<0.01);and decreased the phosphorylation of P65 and IκBα protein and NLRP3,caspase-1(p20)and IL-1β protein expressions(P<0.05,P<0.01)as well.The in vitro result showed that praeruptorin A inhibited the release of LPS-induced NO and reduce the ROS level(P<0.01);decreased the mRNA expressions of IL-1β,COX-2 and iNOS(P<0.05,P<0.01);increased PPAR-γ mRNA expression(P<0.05),and decreased the phosphorylation of P65 and IκBα protein and the expression of NLRP3 protein(P<0.05,P<0.01).CONCLUSION Praeruptorin A,one of the main antitussive components of Suhuang antitussive capsules,may improve CVA because of its anti-inflammatory and antitussive role by inhibiting the activation of NF-κB signaling pathway and reducing the expression of NLRP3 inflammatory corpuscles.
8.Strengthening research on prevention and treatment of chronic skin diseases — population medicine research program
Yan HAN ; Peng XU ; Zhi XIANG ; Tingting JIANG ; Fengqin GE ; Yueping YIN ; Xiangsheng CHEN
Chinese Journal of Dermatology 2024;57(6):567-569
Chronic skin diseases have complex pathogeneses and prolonged courses, and have long adverse impacts on the physical and mental health, as well as the normal life of patients. It is necessary to develop evidence-based strategies and measures for effective prevention and control of chronic skin diseases. However, related studies are limited in China. This article proposes a population medicine research plan for health promotion and equity, and disease prevention, diagnosis, control, treatment, and rehabilitation to establish a collaborative platform for strengthening research on the prevention and treatment of chronic skin diseases in China.
9.Effect of Chaihuang Qingyi Huoxue Granule on Intestinal Microecology in Rats with Severe Acute Pancreatitis
Yijing REN ; Zhi LI ; Xin ZHOU ; Long ZHAO ; Xingyue WANG ; Chaoli JIANG ; Shanshan CHEN
Traditional Chinese Drug Research & Clinical Pharmacology 2024;35(10):1571-1580
Objective To explore the regulation of Chaihuang Qingyi Huoxue Granule on intestinal microecological changes in rats with severe acute pancreatitis (SAP) and the potential mechanism for its treatment of SAP. Methods Forty-eight rats were randomly divided into sham operation group (SHAM),SAP model group (SAP),and Chaihuang Qingyi Huoxue Granule (CH)group,with 16 rats in each group. Each group was further divided into 12 h and 24 h subgroups. The SAP model was induced by retrograde injection of 5% sodium taurocholate into the pancreaticobiliary duct through duodenal wall. The SHAM and SAP groups received normal saline by gavage,while the CH group received 1.2 g·kg-1 Chaihuang Qingyi Huoxue Granule solution by gavage every six hours. At 12 h and 24 h after operation,eight rats from each group were sacrificed to collect abdominal aortic blood,pancreatic and ileal tissues for analysis. Ascites,pancreatic and ileal tissues were observed. Serum amylase(AMY) and lipase (LPS) levels were measured biochemically. Pathological changes in pancreatic and ileal tissues were investigated by HE staining. Claudin-1 protein expression in ileal tissue was detected by Western Blot. Changes in the intestinal flora of ileocecal contents were analyzed by 16S rDNA high-throughput sequencing. Results Compared to the SHAM group at the same time points,the SAP group exhibited extensive pancreatic edema and necrosis. Serum AMY and LPS levels,pancreatic and ileal histopathological scores increased,and Claudin-1 protein expression in ileal tissue markedly decreased (all P<0.05). The differences in abundance of microbial community increased,while the evenness of community composition reduced. The microbial richness showed no significant change (P>0.05),but the microbial diversity decreased(P<0.05). Proteobacteria were dominant intestinal bacteria. Relative abundances of Oscillospira,Ruminococcus,Bifidobacterium,and Bacteroides S24-7 decreased,whereas relative abundances of Shigella and Allobaculum increased. The differences in abundance of microbial community reduced,and the evenness of community composition increased. The microbial richness showed no significant change(P>0.05),but the microbial diversity increased (P<0.05). Firmicutes and Bacteroidetes were the dominant intestinal bacteria. Relative abundances of Oscillospira,Ruminococcus,Bifidobacterium,and Bacteroides S24-7 increased,whereas relative abundances of Shigella and Allobaculum decreased. After the intervention of CH,pathological damage in ileal tissue was improved. The expression of Claudin-1 protein in the intestinal mucosal barrier increased compared to the model group(P<0.05). The differences in abundance of microbial community reduced,and the evenness of community composition increased. CH group showed an increase in some beneficial bacteria and decrease in pathogenic bacteria compared to model group. Conclusion Chaihuang Qingyi Huoxue Granule may reduce pancreas injury in rats with SAP,which may be involved in modulating the intestinal microecology and improving intestinal mucosal barrier function.
10.Sophora davidii Hance leaves total alkaloids Attenuate Lipopolysaccharide-induced inflammatory response in RAW264.7 cell by Inhibiting the MAPK/NF-κB signaling pathway
Shengnan JIANG ; Wenbing ZHI ; Jing CHEN ; Tingting SUN ; Zongren XU ; Shuai LIU ; Hong ZHANG ; Ye LI ; Yang LIU
The Journal of Practical Medicine 2024;40(20):2835-2840
Objective To investigate the in vitro anti-inflammatory effects of Sophora davidii Hance leaves total alkaloids(SDLTAs)and possible molecular mechanisms.Methods The lipopolysaccharide(LPS)-induced inflammation model of RAW264.7 cells was used,and different concentrations of SDLTAs(50,100 and 200 μg/mL)were administered,and the effect of SDLTAs on cellular NO expression was detected by the Griess method;ELISA method was used to detect the effect of SDLTAs on the expression of IL-6,TNF-α and IL-1β;The expression of iNOS,NF-κB p65 and IκBα mRNA was detected by RT-qPCR;Western blotting was used to detecte the expres-sion of p-p38,p-p65 and p-JNK in the cells and NF-κB p65 in the nucleus.Results SDLTAs could significantly inhibit the LPS-induced inflammatory response in RAW264.7 cells.SDLTAs significantly decreased the secretion of NO,IL-6,TNF-α and IL-1β in cells(P<0.01),and significantly decreased the mRNA expressions of iNOS,NF-κB p65 and IκBα in cells(P<0.01).Significantly decreased the protein expression of p-p38,p-p65 and p-JNK in cells and NF-κB p65 in nucleus(P<0.01).Conclusion SDLTAs can exert anti-inflammatory effects by regulating the MAPK/NF-κB signalling pathway.

Result Analysis
Print
Save
E-mail