1.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126.
2.FLASH Interacts with Promyelocytic Leukemia Protein Ⅳ(PML Ⅳ)and Enhances the SUMOylation of p53
Meng-Ni WANG ; Zhen-Zhen XIONG ; Zhi-Ying WANG ; Jian-Hua WU ; Xiao-Zhong SHI
Chinese Journal of Biochemistry and Molecular Biology 2024;40(10):1426-1440
As a unique gene in the genome,FLASH(FADD-like interleukin-1β-converting enzyme asso-ciated huge protein)/CASP8AP2 is involved in multiple cellular processes,including apoptosis,histone gene pre-mRNA processing,transcriptional regulation,and cell cycle progression.Clinical studies have shown that FLASH is a valuable prognostic marker for acute lymphoblastic leukemia,and a crucial factor for the survival of various cancer cells.Therefore,in-depth research into the function of FLASH may offer new perspectives for the treatment of related diseases.Our previous research identified FLASH as a bind-ing partner of p53,demonstrating that FLASH enhances the transcriptional activity of p53.Here we fur-ther investigate the molecular mechanisms of the interaction between FLASH and p53,revealing that the p53-K386R mutation(SUMOylation residue)attenuated its interaction with FLASH(aa 51-200)and FLASH-SIM(SUMO-interacting motif)(aa 1 534-1 806)significantly.However,SUMO can bind to FLASH-SIM directly,instead of FLASH(aa 51-200).Subsequent research shows that overexpression of FLASH in cells enhances global SUMO1 conjugation and p53-SUMO1 conjugation,therefore providing a plausible explanation for the underlying mechanism of FLASH enhancing the transcriptional activity of p53.Since promyelocytic leukemia protein nuclear body(PML NB)serves as subcellular reactors for SUMO conjugation within the cell,and the PML Ⅳ isoform can specifically enhance the SUMO modifica-tion of p53,we have investigated the interaction between FLASH and PML Ⅳ,and elucidated the struc-tural basis of their interaction:both FLASH-N3A(501-802)and FLASH-C2(1 807-1 981)bind to PML Ⅳ(aa 228-633).Further investigations reveal that they can synergistically enhance global SUMO1 modification as well as SUMO1 modification of p53.The interaction between FLASH and tumor suppres-sors p53 or PML Ⅳ enriches our understanding of its function and reveals the potential mechanism of FLASH in tumor development,therefore offering novel insights into cancer diagnosis and treatment.
3.Clinical Features and Prognosis of Acute T-cell Lymphoblastic Leukemia in Children——Multi-Center Data Analysis in Fujian
Chun-Ping WU ; Yong-Zhi ZHENG ; Jian LI ; Hong WEN ; Kai-Zhi WENG ; Shu-Quan ZHUANG ; Xing-Guo WU ; Xue-Ling HUA ; Hao ZHENG ; Zai-Sheng CHEN ; Shao-Hua LE
Journal of Experimental Hematology 2024;32(1):6-13
Objective:To evaluate the efficacy of acute T-cell lymphoblastic leukemia(T-ALL)in children and explore the prognostic risk factors.Methods:The clinical data of 127 newly diagnosed children with T-ALL admitted to five hospitals in Fujian province from April 2011 to December 2020 were retrospectively analyzed,and compared with children with newly diagnosed acute precursor B-cell lymphoblastic leukemia(B-ALL)in the same period.Kaplan-Meier analysis was used to evaluate the overall survival(OS)and event-free survival(EFS),and COX proportional hazard regression model was used to evaluate the prognostic factors.Among 116 children with T-ALL who received standard treatment,78 cases received the Chinese Childhood Leukemia Collaborative Group(CCLG)-ALL 2008 protocol(CCLG-ALL 2008 group),and 38 cases received the China Childhood Cancer Collaborative Group(CCCG)-ALL 2015 protocol(CCCG-ALL 2015 group).The efficacy and serious adverse event(SAE)incidence of the two groups were compared.Results:Proportion of male,age ≥ 10 years old,white blood cell count(WBC)≥ 50 × 109/L,central nervous system leukemia,minimal residual disease(MRD)≥ 1%during induction therapy,and MRD ≥ 0.01%at the end of induction in T-ALL children were significantly higher than those in B-ALL children(P<0.05).The expected 10-year EFS and OS of T-ALL were 59.7%and 66.0%,respectively,which were significantly lower than those of B-ALL(P<0.001).COX analysis showed that WBC ≥ 100 x 109/L at initial diagnosis and failure to achieve complete remission(CR)after induction were independent risk factors for poor prognosis.Compared with CCLG-ALL 2008 group,CCCG-ALL 2015 group had lower incidence of infection-related SAE(15.8%vs 34.6%,P=0.042),but higher EFS and OS(73.9%vs 57.2%,PEFS=0.090;86.5%vs 62.3%,PoS=0.023).Conclusions:The prognosis of children with T-ALL is worse than children with B-ALL.WBC ≥ 100 × 109/L at initial diagnosis and non-CR after induction(especially mediastinal mass has not disappeared)are the risk factors for poor prognosis.CCCG-ALL 2015 regimen may reduce infection-related SAE and improve efficacy.
4.The Factors Related to Treatment Failure in Children with Acute Lymphoblastic leukemia——Analysis of Multi-Center Data from Real World in Fujian Province
Chun-Xia CAI ; Yong-Zhi ZHENG ; Hong WEN ; Kai-Zhi WENG ; Shu-Quan ZHUANG ; Xing-Guo WU ; Shao-Hua LE ; Hao ZHENG
Journal of Experimental Hematology 2024;32(6):1656-1664
Objective:To analyze the related factors of treatment failure in children with acute lymphoblastic leukemia (ALL)in real-world.Methods:The clinical data of 1414 newly diagnosed children with ALL admitted to five hospital in Fujian province from April 2011 to December 2020 were retrospectively analyzed.Treatment failure was defined as relapse,non-relapse death,and secondary tumor.Results:Following-up for median time 49.7 (0.1-136. 9)months,there were 269 cases (19.0%)treatment failure,including 140 cases (52.0%)relapse,and 129 cases (48.0%)non-relapse death.Cox univariate and multivariate analysis showed that white WBC≥50 ×109/L at newly diagnosis,acute T-cell lymphoblastic leukemia (T-ALL),BCR-ABL1,KMT2A-rearrangement and poor early treatment response were independent risk factor for treatment failure (all HR>1.000,P<0.05).The 5-year OS of 140 relapsed ALL patients was only 23.8%,with a significantly worse prognosis for very early relapse (relapse time within 18 months of diagnosis).Among 129 patients died from non-relapse death,71 cases (26.4%)were died from treatment-related complications,56 cases (20.8%)died from treatment abandonment,and 2 cases (0.7%)died from disease progression.Among them,treatment-related death were significantly correlated with chemotherapy intensity,while treatment abandonment were mainly related to economic factors.Conclusion:The treatment failure of children with ALL in our province is still relatively high,with relapse being the main cause of treatment failure,while treatment related death and treatment abandonment caused by economic factors are the main causes of non-relapse related death.
5.A Retrospective Study of the Effect of Spinopelvic Parameters on Fatty Infiltration in Paraspinal Muscles in Patients With Lumbar Spondylolisthesis
Jia-Chen YANG ; Jia-Yu CHEN ; Yin DING ; Yong-Jie YIN ; Zhi-Ping HUANG ; Xiu-Hua WU ; Zu-Cheng HUANG ; Yi-Kai LI ; Qing-An ZHU
Neurospine 2024;21(1):223-230
Objective:
The effect on fat infiltration (FI) of paraspinal muscles in degenerative lumbar spinal diseases has been demonstrated except for spinopelvic parameters. The present study is to identify the effect of spinopelvic parameters on FI of paraspinal muscle (PSM) and psoas major muscle (PMM) in patients with degenerative lumbar spondylolisthesis.
Methods:
A single-center, retrospective cross-sectional study of 160 patients with degenerative lumbar spondylolisthesis (DLS) and lumbar stenosis (LSS) who had lateral full-spine x-ray and lumbar spine magnetic resonance imaging was conducted. PSM and PMM FIs were defined as the ratio of fat to its muscle cross-sectional area. The FIs were compared among patients with different pelvic tilt (PT) and pelvic incidence (PI), respectively.
Results:
The PSM FI correlated significantly with pelvic parameters in DLS patients, but not in LSS patients. The PSM FI in pelvic retroversion (PT > 25°) was 0.54 ± 0.13, which was significantly higher in DLS patients than in normal pelvis (0.41 ± 0.14) and pelvic anteversion (PT < 5°) (0.34 ± 0.12). The PSM FI of DLS patients with large PI ( > 60°) was 0.50 ± 0.13, which was higher than those with small ( < 45°) and normal PI (0.37 ± 0.11 and 0.36 ± 0.13). However, the PSM FI of LSS patients didn’t change significantly with PT or PI. Moreover, the PMM FI was about 0.10–0.15, which was significantly lower than the PSM FI, and changed with PT and PI in a similar way of PSM FI with much less in magnitude.
Conclusion
FI of the PSMs increased with greater pelvic retroversion or larger pelvic incidence in DLS patients, but not in LSS patients.
6.Ameliorative effects of Schisandrol A in Suhuang antitussive capsule on post-infectious cough
Nan WU ; Zi-Yu BAI ; Yong-Yu OU ; Tong-Lian DI ; Zi-Yao ZHAO ; Hong JIANG ; Zhi-Hao ZHANG ; Ning-Hua TAN
Chinese Traditional Patent Medicine 2024;46(8):2562-2571
AIM To investigate the ameliorative effects of Schisandrol A(Sol A)in Suhuang antitussive capsule on post-infectious cough(PIC).METHODS The in vivo mouse PIC model was established by intratracheal instillation of lipopolysaccharide(LPS)combined with cigarette smoke exposure.The mice were randomly divided into the control group,the model group,the Suhuang antitussive capsule group(14 g/kg),the montelukast sodium positive control group(3 mg/kg),and low and high dose Sol A groups(10,30 mg/kg).The in vitro PIC model was established by stimulating human bronchial epithelial cells(BEAS-2B)with LPS.The cells were divided into the control group,the model group,the Suhuang antitussive capsule group(10 μg/mL)and low and high dose Sol A groups(3,10 μmol/L).HE and Masson staining were used to detect the pathological changes of the lung and bronchial tissues.ELISA was used to detect the levels of IL-1β,IL-6,TNF-α,ROS,MDA,SOD and GSH in the lung tissues.RT-qPCR was used to detect the IL-1β,IL-6 and TNF-α mRNA expressions in BEAS-2B cells.And Western blot was applied to detect the protein expressions of p-PI3K,p-Akt,NOX4,SIRT1,p-ERK,Fibronectin,E-cadherin,Vimentin and α-SMA in mouse lung tissue and BEAS-2B cells.RESULTS Compared with the model group,the groups intervened with Sol A or Suhuang antitussive capsule displayed prolonged cough latency(P<0.01);reduced cough frequency(P<0.01);relieved pulmonary inflammatory cell infiltration and collagen deposition in PIC mice;decreased pulmonary levels of IL-1β,IL-6,TNF-α,ROS,MDA and protein expressions of Fibronectin,Vimentin,α-SMA,p-ERK,p-PI3K,p-Akt,and NOX4(P<0.05,P<0.01);increased pulmonary levels of SOD and GSH and protein expressions of E-cadherin and SIRT1(P<0.05,P<0.01);decreased ROS level,IL-1β,IL-6,TNF-α mRNA expressions and p-ERK,p-PI3K,p-Akt,NOX4 protein expressions in vitro(P<0.05,P<0.01);and increased SIRT1 protein expression in vitro as well(P<0.01).CONCLUSION Being the main antitussive component of Suhuang antitussive capsule upon the PIC model,Sol A inhibits the inflammation via SIRT1/ERK signaling pathway and relieve the oxidative stress via PI3K/Akt/NOX4 signaling pathway.
7.Ameliorative effects of praeruptorin A from Suhuang antitussive capsules on cough variant asthma
Zi-Yao ZHAO ; Hong JIANG ; Yong-Yu OU ; Xiao-Yuan CHEN ; Nan WU ; Zi-Yu BAI ; Zhi-Hao ZHANG ; Ning-Hua TAN
Chinese Traditional Patent Medicine 2024;46(9):2904-2914
AIM To explore the effects of praeruptorin A from Suhuang antitussive capsules on cough variant asthma(CVA).METHODS The rats were randomly divided into the normal group,the model group,the dexamethasone group(0.5 mg/kg),the Suhuang antitussive capsules group(7 g/kg)and the low,medium and high dose praeruptorin A groups(15,30 and 60 mg/kg).The rat model of CVA was established by intraperitoneal injection of sensitizer(1 mg/mL ovalbumin and 10 mg/mL aluminum hydroxide)and aerosol inhalation of 1%ovalbumin followed by the corresponding dosing of drugs by gavage initiated on the 14th day.Another 14 days later,the rats had their pathological pulmonary changes observed by HE,Masson and PAS stainings;their number of inflammatory cells in bronchoalveolar lavage fluid(BALF)detected by hematology analyzer;and their levels of IL-4,IL-5,IL-13 and MUC5AC in BALF detected by ELISA.The RAW264.7 cell inflammatory model induced by lipopolysaccharide(LPS)was treated with 4,8,16 μmol/L praeruptorin A or 0.25 mg/mL Suhuang antitussive capsules,respectively.And the cells had their NO level detected by Griess method,and their ROS expression observed using fluorescence microscopy.The detections of the pulmonary and cellular mRNA expressions of IL-6,IL-1β,COX-2,iNOS and PPAR-γ by RT-qPCR;and the protein expressions of p-P65,P65,p-IκBα,IκBα,NLRP3,caspase-1(p20)and IL-1β by Western blot were conducted in both the cells and the rats.RESULTS The in vivo result showed that praeruptorin A reduced the cough frequency(P<0.01);prolonged the cough latency(P<0.05,P<0.01);reduced the number of eosinophils and neutrophils in BALF(P<0.05,P<0.01);decreased the levels of IL-4,IL-5,IL-13 and MUC5AC in BALF and the pulmonary mRNA expressions of IL-6,IL-1β,COX-2 and iNOS(P<0.05,P<0.01);and decreased the phosphorylation of P65 and IκBα protein and NLRP3,caspase-1(p20)and IL-1β protein expressions(P<0.05,P<0.01)as well.The in vitro result showed that praeruptorin A inhibited the release of LPS-induced NO and reduce the ROS level(P<0.01);decreased the mRNA expressions of IL-1β,COX-2 and iNOS(P<0.05,P<0.01);increased PPAR-γ mRNA expression(P<0.05),and decreased the phosphorylation of P65 and IκBα protein and the expression of NLRP3 protein(P<0.05,P<0.01).CONCLUSION Praeruptorin A,one of the main antitussive components of Suhuang antitussive capsules,may improve CVA because of its anti-inflammatory and antitussive role by inhibiting the activation of NF-κB signaling pathway and reducing the expression of NLRP3 inflammatory corpuscles.
8.A Retrospective Study of the Effect of Spinopelvic Parameters on Fatty Infiltration in Paraspinal Muscles in Patients With Lumbar Spondylolisthesis
Jia-Chen YANG ; Jia-Yu CHEN ; Yin DING ; Yong-Jie YIN ; Zhi-Ping HUANG ; Xiu-Hua WU ; Zu-Cheng HUANG ; Yi-Kai LI ; Qing-An ZHU
Neurospine 2024;21(1):223-230
Objective:
The effect on fat infiltration (FI) of paraspinal muscles in degenerative lumbar spinal diseases has been demonstrated except for spinopelvic parameters. The present study is to identify the effect of spinopelvic parameters on FI of paraspinal muscle (PSM) and psoas major muscle (PMM) in patients with degenerative lumbar spondylolisthesis.
Methods:
A single-center, retrospective cross-sectional study of 160 patients with degenerative lumbar spondylolisthesis (DLS) and lumbar stenosis (LSS) who had lateral full-spine x-ray and lumbar spine magnetic resonance imaging was conducted. PSM and PMM FIs were defined as the ratio of fat to its muscle cross-sectional area. The FIs were compared among patients with different pelvic tilt (PT) and pelvic incidence (PI), respectively.
Results:
The PSM FI correlated significantly with pelvic parameters in DLS patients, but not in LSS patients. The PSM FI in pelvic retroversion (PT > 25°) was 0.54 ± 0.13, which was significantly higher in DLS patients than in normal pelvis (0.41 ± 0.14) and pelvic anteversion (PT < 5°) (0.34 ± 0.12). The PSM FI of DLS patients with large PI ( > 60°) was 0.50 ± 0.13, which was higher than those with small ( < 45°) and normal PI (0.37 ± 0.11 and 0.36 ± 0.13). However, the PSM FI of LSS patients didn’t change significantly with PT or PI. Moreover, the PMM FI was about 0.10–0.15, which was significantly lower than the PSM FI, and changed with PT and PI in a similar way of PSM FI with much less in magnitude.
Conclusion
FI of the PSMs increased with greater pelvic retroversion or larger pelvic incidence in DLS patients, but not in LSS patients.
9.A Retrospective Study of the Effect of Spinopelvic Parameters on Fatty Infiltration in Paraspinal Muscles in Patients With Lumbar Spondylolisthesis
Jia-Chen YANG ; Jia-Yu CHEN ; Yin DING ; Yong-Jie YIN ; Zhi-Ping HUANG ; Xiu-Hua WU ; Zu-Cheng HUANG ; Yi-Kai LI ; Qing-An ZHU
Neurospine 2024;21(1):223-230
Objective:
The effect on fat infiltration (FI) of paraspinal muscles in degenerative lumbar spinal diseases has been demonstrated except for spinopelvic parameters. The present study is to identify the effect of spinopelvic parameters on FI of paraspinal muscle (PSM) and psoas major muscle (PMM) in patients with degenerative lumbar spondylolisthesis.
Methods:
A single-center, retrospective cross-sectional study of 160 patients with degenerative lumbar spondylolisthesis (DLS) and lumbar stenosis (LSS) who had lateral full-spine x-ray and lumbar spine magnetic resonance imaging was conducted. PSM and PMM FIs were defined as the ratio of fat to its muscle cross-sectional area. The FIs were compared among patients with different pelvic tilt (PT) and pelvic incidence (PI), respectively.
Results:
The PSM FI correlated significantly with pelvic parameters in DLS patients, but not in LSS patients. The PSM FI in pelvic retroversion (PT > 25°) was 0.54 ± 0.13, which was significantly higher in DLS patients than in normal pelvis (0.41 ± 0.14) and pelvic anteversion (PT < 5°) (0.34 ± 0.12). The PSM FI of DLS patients with large PI ( > 60°) was 0.50 ± 0.13, which was higher than those with small ( < 45°) and normal PI (0.37 ± 0.11 and 0.36 ± 0.13). However, the PSM FI of LSS patients didn’t change significantly with PT or PI. Moreover, the PMM FI was about 0.10–0.15, which was significantly lower than the PSM FI, and changed with PT and PI in a similar way of PSM FI with much less in magnitude.
Conclusion
FI of the PSMs increased with greater pelvic retroversion or larger pelvic incidence in DLS patients, but not in LSS patients.
10.A multi-center epidemiological study on pneumococcal meningitis in children from 2019 to 2020
Cai-Yun WANG ; Hong-Mei XU ; Gang LIU ; Jing LIU ; Hui YU ; Bi-Quan CHEN ; Guo ZHENG ; Min SHU ; Li-Jun DU ; Zhi-Wei XU ; Li-Su HUANG ; Hai-Bo LI ; Dong WANG ; Song-Ting BAI ; Qing-Wen SHAN ; Chun-Hui ZHU ; Jian-Mei TIAN ; Jian-Hua HAO ; Ai-Wei LIN ; Dao-Jiong LIN ; Jin-Zhun WU ; Xin-Hua ZHANG ; Qing CAO ; Zhong-Bin TAO ; Yuan CHEN ; Guo-Long ZHU ; Ping XUE ; Zheng-Zhen TANG ; Xue-Wen SU ; Zheng-Hai QU ; Shi-Yong ZHAO ; Lin PANG ; Hui-Ling DENG ; Sai-Nan SHU ; Ying-Hu CHEN
Chinese Journal of Contemporary Pediatrics 2024;26(2):131-138
Objective To investigate the clinical characteristics and prognosis of pneumococcal meningitis(PM),and drug sensitivity of Streptococcus pneumoniae(SP)isolates in Chinese children.Methods A retrospective analysis was conducted on clinical information,laboratory data,and microbiological data of 160 hospitalized children under 15 years old with PM from January 2019 to December 2020 in 33 tertiary hospitals across the country.Results Among the 160 children with PM,there were 103 males and 57 females.The age ranged from 15 days to 15 years,with 109 cases(68.1% )aged 3 months to under 3 years.SP strains were isolated from 95 cases(59.4% )in cerebrospinal fluid cultures and from 57 cases(35.6% )in blood cultures.The positive rates of SP detection by cerebrospinal fluid metagenomic next-generation sequencing and cerebrospinal fluid SP antigen testing were 40% (35/87)and 27% (21/78),respectively.Fifty-five cases(34.4% )had one or more risk factors for purulent meningitis,113 cases(70.6% )had one or more extra-cranial infectious foci,and 18 cases(11.3% )had underlying diseases.The most common clinical symptoms were fever(147 cases,91.9% ),followed by lethargy(98 cases,61.3% )and vomiting(61 cases,38.1% ).Sixty-nine cases(43.1% )experienced intracranial complications during hospitalization,with subdural effusion and/or empyema being the most common complication[43 cases(26.9% )],followed by hydrocephalus in 24 cases(15.0% ),brain abscess in 23 cases(14.4% ),and cerebral hemorrhage in 8 cases(5.0% ).Subdural effusion and/or empyema and hydrocephalus mainly occurred in children under 1 year old,with rates of 91% (39/43)and 83% (20/24),respectively.SP strains exhibited complete sensitivity to vancomycin(100% ,75/75),linezolid(100% ,56/56),and meropenem(100% ,6/6).High sensitivity rates were also observed for levofloxacin(81% ,22/27),moxifloxacin(82% ,14/17),rifampicin(96% ,25/26),and chloramphenicol(91% ,21/23).However,low sensitivity rates were found for penicillin(16% ,11/68)and clindamycin(6% ,1/17),and SP strains were completely resistant to erythromycin(100% ,31/31).The rates of discharge with cure and improvement were 22.5% (36/160)and 66.2% (106/160),respectively,while 18 cases(11.3% )had adverse outcomes.Conclusions Pediatric PM is more common in children aged 3 months to under 3 years.Intracranial complications are more frequently observed in children under 1 year old.Fever is the most common clinical manifestation of PM,and subdural effusion/emphysema and hydrocephalus are the most frequent complications.Non-culture detection methods for cerebrospinal fluid can improve pathogen detection rates.Adverse outcomes can be noted in more than 10% of PM cases.SP strains are high sensitivity to vancomycin,linezolid,meropenem,levofloxacin,moxifloxacin,rifampicin,and chloramphenicol.[Chinese Journal of Contemporary Pediatrics,2024,26(2):131-138]

Result Analysis
Print
Save
E-mail