1.Rapid screening the chemical components in Jiawei Dingzhi pills using precursor ion selection UHPLC-Q-TOF-MS/MS
Zu-ying WEI ; Cong FANG ; Kui CHEN ; Hao-lan YANG ; Jie LIU ; Zhi-xin JIA ; Yue-ting LI ; Hong-bin XIAO
Acta Pharmaceutica Sinica 2024;59(8):2350-2364
A precursor ion selection (PIS) based ultra high performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS) analytical method was used to screen the chemical components in Jiawei Dingzhi pills (JWDZP) comprehensively and rapidly. To compile the components of the compound medicine, a total of 1 921 components were found utilizing online databases and literature. After verifying the sources, unifying the component names, merging the multi-flavor attributed components, and removing the weak polar molecules, 450 components were successfully retained. The Acquity UPLC HSS T3 column (100 mm × 2.1 mm, 1.8 μm) was used, with a 0.1% formic acid water (A)-acetonitrile (B) as the mobile phase. The flow rate was 0.35 mL·min-1, the column temperature was 35 ℃, and an electrospray ion source was used. Data was collected with the PIS strategy in both positive and negative ion modes. Compounds were screened through matching accurate molecular weight of the database, and identified according to MS/MS data (characteristic fragment ions and neutral loss), with comparison of reference. Some compounds were confirmed using standard products. A total of 176 compounds were screened out in the extract of JWDZP, among which 26 compounds were confirmed by standard products. These compounds include 96 components from the sovereign drug, and 34 coefflux components with low ion intensity. The PIS-UHPLC-Q-TOF-MS/MS method established in this study can quickly and comprehensively screen the chemical components of JWDZP, which enhanced the screening rate of components with co-elution compounds of low ion intensities and provided a basis for the study of the material foundation of JWDZP.
2.Chemical diversity of azaphilones from the marine-derived fungus Talaromyces sp. HK1-18
Jia-cheng XUE ; Zhong-hui LI ; Bao-cong HAO ; Yao-yao ZHENG ; Xia-hao ZHU ; Zhi-xin CHEN ; Min CHEN
Acta Pharmaceutica Sinica 2024;59(5):1478-1483
GNPS-based mass spectrum-molecular networks is an effective strategy for rapidly identifying known natural products and discovering novel structures. The chemical diversity of azaphilones from the fermentation extracts of
3.The Quantitative Analysis of Dynamic Mechanisms Impacting Gastric Cancer Cell Proliferation via Serine/glycine Conversion
Jun-Wu FAN ; Xiao-Mei ZHU ; Zhi-Yuan FAN ; Bing-Ya LIU ; Ping AO ; Yong-Cong CHEN
Progress in Biochemistry and Biophysics 2024;51(3):658-672
ObjectiveGastric cancer (GC) seriously affects human health and life, and research has shown that it is closely related to the serine/glycine metabolism. The proliferation ability of tumor cells is greatly influenced by the metabolism of serine and glycine. The aim of this study was to investigate the molecular mechanism of serine/glycine metabolism can affect the proliferation of gastric cancer cells. MethodsIn this work, a stable metabolic dynamic model of gastric cancer cells was established via a large-scale metabolic network dynamic modeling method in terms of a potential landscape description of stochastic and non-gradient systems. Based on the regulation of the model, a quantitative analysis was conducted to investigate the dynamic mechanism of serine/glycine metabolism affecting the proliferation of gastric cancer cells. We introduced random noise to the kinetic equations of the general metabolic network, and applied stochastic kinetic decomposition to obtain the Lyapunov function of the metabolic network parameter space. A stable metabolic network was achieved by further reducing the change in the Lyapunov function tied to the stochastic fluctuations. ResultsDespite the unavailability of a large number of dynamic parameters, we were able to successfully construct a dynamic model for the metabolic network in gastric cancer cells. When extracellular serine is available, the model preferentially consumes serine. In addition, when the conversion rate of glycine to serine increases, the model significantly upregulates the steady-state fluxes of S-adenosylmethionine (SAM) and S-adenosyl homocysteine (SAH). ConclusionIn this paper, we provide evidence supporting the preferential uptake of serine by gastric cancer cells and the important role of serine/glycine conversion rate in SAM generation, which may affect the proliferation ability of gastric cancer cells by regulating the cellular methylation process. This provides a new idea and direction for targeted cancer therapy based on serine/glycine metabolism.
4.Inferring Mycobacterium Tuberculosis Drug Resistance and Transmission using Whole-genome Sequencing in a High TB-burden Setting in China
Feng Yu FAN ; Xin Dong LIU ; Wang Yi CHEN ; Chao Xi OU ; Zhi Qi MAO ; Ting Ting YANG ; Jiang Xi WANG ; Cong Wen HE ; Bing ZHAO ; Jiang Zhen LIU ; Maiweilanjiang ABULIMITI ; Maimaitiaili AIHEMUTI ; Qian GAO ; Lin Yan ZHAO
Biomedical and Environmental Sciences 2024;37(2):157-169
Objective China is among the 30 countries with a high burden of tuberculosis(TB)worldwide,and TB remains a public health concern.Kashgar Prefecture in the southern Xinjiang Autonomous Region is considered as one of the highest TB burden regions in China.However,molecular epidemiological studies of Kashgar are lacking. Methods A population-based retrospective study was conducted using whole-genome sequencing(WGS)to determine the characteristics of drug resistance and the transmission patterns. Results A total of 1,668 isolates collected in 2020 were classified into lineages 2(46.0%),3(27.5%),and 4(26.5%).The drug resistance rates revealed by WGS showed that the top three drugs in terms of the resistance rate were isoniazid(7.4%,124/1,668),streptomycin(6.0%,100/1,668),and rifampicin(3.3%,55/1,668).The rate of rifampicin resistance was 1.8%(23/1,290)in the new cases and 9.4%(32/340)in the previously treated cases.Known resistance mutations were detected more frequently in lineage 2 strains than in lineage 3 or 4 strains,respectively:18.6%vs.8.7 or 9%,P<0.001.The estimated proportion of recent transmissions was 25.9%(432/1,668).Multivariate logistic analyses indicated that sex,age,occupation,lineage,and drug resistance were the risk factors for recent transmission.Despite the low rate of drug resistance,drug-resistant strains had a higher risk of recent transmission than the susceptible strains(adjusted odds ratio,1.414;95%CI,1.023-1.954;P = 0.036).Among all patients with drug-resistant tuberculosis(DR-TB),78.4%(171/218)were attributed to the transmission of DR-TB strains. Conclusion Our results suggest that drug-resistant strains are more transmissible than susceptible strains and that transmission is the major driving force of the current DR-TB epidemic in Kashgar.
5.Responses of blood parameters and hemoglobin subtypes in plateau zokors and plateau pikas to different altitude habitats.
Cong-Hui GAO ; Ji-Mei LI ; Bo XU ; Zhi-Fan AN ; Zhi-Jie WANG ; Xiao-Qi CHEN ; Jia-Yu ZHANG ; Deng-Bang WEI
Acta Physiologica Sinica 2023;75(1):69-81
The plateau zokor (Myospalax baileyi) and plateau pika (Ochotona curzoniae) are native species unique to the Qinghai-Tibetan Plateau with successful adaptation to the hypoxic environment. In this study, the number of red blood cells, hemoglobin concentration, mean hematocrit and mean volume of red blood cells were measured in plateau zokors and plateau pikas at different altitudes. Hemoglobin subtypes of two plateau animals were identified by mass spectrometry sequencing. The forward selection sites in two animals' hemoglobin subunits were analyzed by PAML4.8 program. Homologous modeling was used to analyze the effect of forward selection sites on the affinity of hemoglobin to oxygen. The adapting strategies of plateau zokors and plateau pikas to hypoxia at different altitudes were analyzed through comparing blood parameters between the two species. The results indicated that, with increasing altitudes, plateau zokors responded to hypoxia by increasing red blood cell count and decreasing red blood cell volume, while plateau pikas took the opposite strategies to plateau zokors. In erythrocytes of plateau pikas, both adult α2β2 and fetal α2ε2 hemoglobins were identified, while erythrocytes of plateau zokors only had adult α2β2 hemoglobin, however the affinities and the allosteric effects of the hemoglobin of plateau zokors were significantly higher than those of plateau pikas. Mechanistically, in the α and β subunits of hemoglobin of plateau zokors and pikas, the numbers and the sites of the positively selected amino acids as well as the side chain groups polarities and orientations of the amino acids differed significantly, which may result in the difference of the affinities to oxygen of hemoglobin between plateau zokors and pikas. In conclusion, the adaptive mechanisms to respond to hypoxia in blood properties of plateau zokors and plateau pikas are species-specific.
Animals
;
Altitude
;
Amino Acids
;
Hemoglobins
;
Hypoxia
;
Lagomorpha
6.Improvement of high-quality evaluation criteria of Chinese patent medicines based on whole process control.
Yan LIU ; Cong GUO ; Jun ZHANG ; Qing-Xia XU ; An-Yi ZHAO ; Yong-Zhen LAO ; Jiang-Min SU ; Zhi-Guang WANG ; Yu-Zhen LIU ; Sha CHEN ; An LIU
China Journal of Chinese Materia Medica 2023;48(6):1700-1704
Chinese patent medicines(CPMs) are unique therapeutic drugs in China. Establishing and improving the evaluation criteria is an important measure to promote the high-quality development of CPMs. Based on the "evaluation criteria of high-grade CPMs with quality as the core index" established by our group in 2018, the "high-quality evaluation criteria for CPMs based on whole process control" was proposed in the present study in 2022. The scope of application and basic principles of the new criteria were clarified. A quality evaluation scoring table was established in the new criteria, including five parts: raw material selection, production process, quality control, efficacy evaluation, and brand building. The technical evaluation indexes involved have increased from 20% in the original criteria to 70% in the new criteria, and efficacy evaluation has been added in the new criteria. The subjective evaluation indicators account for a large proportion in the original criteria, which is prone to bias. The improved criteria overcome this shortcoming. It is expected that the new criteria as a basis can play a better role in the selection of high-quality products of CPMs, guide enterprises and institutions to participate actively in the evaluation and research of high-quality CPMs, and promote the high-quality development of CPMs.
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
;
Nonprescription Drugs
;
Chlorobenzenes
;
China
8.Application of Optical Genome Mapping Technology in Detecting Complex Chromosomal Rearrangement
Shu-jing HE ; Zhi-qiang ZHANG ; Yi-juan HUANG ; Li-nan XU ; Yuan-qiu CHEN ; Cong FANG ; Zi REN
Journal of Sun Yat-sen University(Medical Sciences) 2023;44(6):943-948
ObjectiveTo investigate the application of optical genome mapping (OGM) technology in detecting complex chromosomal rearrangement. MethodsWe recruited five patients who were diagnosed as complex chromosomal rearrangement at the Reproductive Medicine Center of the Sixth Affiliated Hospital of Sun Yat-sen University from January 2022 to June 2023. They underwent OGM, nanopore sequencing and pre-implantation genetic testing (PGT). The results were compared with the results of karyotype and chromosomal microarray analysis (CMA)/ copy number variation sequencing (CNV-Seq). ResultsOGM could detect translocation, invert inversion, and triplet translocation, which were consistent with the results of OGM and CMA/ CNV-Seq. But OGM could not detect Robertsonian translocation. ConclusionBecause of its ultra-long reads, OGM realizes the detection across repetitive regions, and it has great advantages when applied in patients with complex chromosome rearrangement or uncertain karyotype analysis. It can accurately locate breakpoints.
9.Establishment and Clinical Significance of Prognostic Nomogram Model for Diffuse Large B-Cell Lymphoma Based on Immunohistochemistry Markers and International Prognostic Index Scores.
Ya-Wen XU ; Yu-Lan ZHOU ; Fan-Cong KONG ; Zhi-Wei CHEN ; Fei LI
Journal of Experimental Hematology 2023;31(3):753-761
OBJECTIVE:
To retrospectively analyze clinical characteristics and survival time of patients with diffuse large B-cell lymphoma (DLBCL), detect prognosis-related markers, and establish a nomogram prognostic model of clinical factors combined with biomarkers.
METHODS:
One hundred and thirty-seven patients with DLBCL were included in this study from January 2014 to March 2019 in the First Affiliated Hospital of Nanchang University. The expression of GCET1, LMO2, BCL-6, BCL-2 and MYC protein were detected by immunohistochemistry (IHC), then the influences of these proteins on the survival and prognosis of the patients were analyzed. Univariate and multivariate Cox regression analysis were used to gradually screen the prognostic factors in nomogram model. Finally, nomogram model was established according to the result of multivariate analysis.
RESULTS:
The positive expression of GCET1 protein was more common in patients with Ann Arbor staging I/II (P =0.011). Compared with negative patients, patients with positive expression of LMO2 protein did not often show B symptoms (P =0.042), and could achieve better short-term curative effect (P =0.005). The overall survival (OS) time of patients with positive expression of LMO2 protein was significantly longer than those with negative expression of LMO2 protein (P =0.018), though the expression of LMO2 protein did not correlate with progression-free survival (PFS) (P >0.05). However, the expression of GCET1 protein had no significant correlation with OS and PFS. Multivariate Cox regression analysis showed that nomogram model consisted of 5 prognostic factors, including international prognostic index (IPI), LMO2 protein, BCL-2 protein, MYC protein and rituximab. The C-index applied to the nomogram model for predicting 4-year OS rate was 0.847. Moreover, the calibrated curve of 4-year OS showed that nomogram prediction had good agreement with actual prognosis.
CONCLUSION
The nomogram model incorporating clinical characteristics and IHC biomarkers has good discrimination and calibration, which provides a useful tool for the risk stratification of DLBCL.
Humans
;
Prognosis
;
Nomograms
;
Immunohistochemistry
;
Retrospective Studies
;
Clinical Relevance
;
Lymphoma, Large B-Cell, Diffuse/drug therapy*
;
Rituximab/therapeutic use*
;
Proto-Oncogene Proteins c-bcl-2
;
Transcription Factors
;
Antineoplastic Combined Chemotherapy Protocols
10.Gαi1/3 mediation of Akt-mTOR activation is important for RSPO3-induced angiogenesis.
Gang XU ; Li-Na QI ; Mei-Qing ZHANG ; Xue-Yun LI ; Jin-Long CHAI ; Zhi-Qing ZHANG ; Xia CHEN ; Qian WANG ; Ke-Ran LI ; Cong CAO
Protein & Cell 2023;14(3):217-222

Result Analysis
Print
Save
E-mail