1.Visual feature extraction combining dissolution testing for the study of drug release behavior of gliclazide modified release tablets
Si-yu CHEN ; Ze-ya LI ; Ping LI ; Xin-qing ZHAO ; Tao GONG ; Li DENG ; Zhi-rong ZHANG
Acta Pharmaceutica Sinica 2025;60(1):225-231
Oral solid dosage forms require processes such as disintegration and dissolution to release the drug before it can be absorbed and utilized by the body. In this manuscript, imaging technology was used to continuously visualize and characterize the
2.The Functional Diversity and Regulatory Mechanism of Clathrin Plaques
Yi-Ge ZHAO ; Zhao-Hong JIANG ; Qian-Yi ZHOU ; Zhi-Ming CHEN
Progress in Biochemistry and Biophysics 2025;52(8):1958-1971
Clathrin-mediated endocytosis (CME) is a critical process by which cells internalize macromolecular substances and initiate vesicle trafficking, serving as the foundation for many cellular activities. Central to this process are clathrin-coated structures (CCSs), which consist of clathrin-coated pits (CCPs) and clathrin plaques. While clathrin-coated pits are well-established in the study of endocytosis, clathrin plaques represent a more recently discovered but equally important component of this system. These plaques are large, flat, and extended clathrin-coated assemblies found on the cytoplasmic membrane. They are distinct from the more typical clathrin-coated pits in terms of their morphology, larger surface area, and longer lifespan. Recent research has revealed that clathrin plaques play roles that go far beyond endocytosis, contributing to diverse cellular processes such as cellular adhesion, mechanosensing, migration, and pathogen invasion. Unlike traditional clathrin-coated pits, which are transient and dynamic structures involved primarily in the internalization of molecules, clathrin plaques are more stable and extensive, often persisting for extended periods. Their extended lifespan suggests that they serve functions beyond the typical endocytic role, making them integral to various cellular processes. For instance, clathrin plaques are involved in the regulation of intercellular adhesion, allowing cells to better adhere to one another or to the extracellular matrix, which is crucial for tissue formation and maintenance. Furthermore, clathrin plaques act as mechanosensitive hubs, enabling the cell to sense and respond to mechanical stress, a feature that is essential for processes like migration, tissue remodeling, and even cancer progression. Recent discoveries have also highlighted the role of clathrin plaques in cellular signaling. These plaques can serve as scaffolds for signaling molecules, orchestrating the activation of various pathways that govern cellular behavior. For example, the recruitment of actin-binding proteins such as F-actin and vinculin to clathrin plaques can influence cytoskeletal dynamics, helping cells adapt to mechanical changes in their environment. This recruitment also plays a pivotal role in regulating cellular migration, which is crucial for developmental processes. Additionally, clathrin plaques influence receptor-mediated signal transduction by acting as platforms for the assembly of signaling complexes, thereby affecting processes such as growth factor signaling and cellular responses to extracellular stimuli. Despite the growing body of evidence that supports the involvement of clathrin plaques in a wide array of cellular functions, much remains unknown about the precise molecular mechanisms that govern their formation, maintenance, and turnover. For example, the factors that regulate the recruitment of clathrin and other coat proteins to form plaques, as well as the signaling molecules that coordinate plaque dynamics, remain areas of active research. Furthermore, the complex interplay between clathrin plaques and other cellular systems, such as the actin cytoskeleton and integrin-based adhesion complexes, needs further exploration. Studies have shown that clathrin plaques can respond to mechanical forces, with recent findings indicating that they act as mechanosensitive structures that help the cell adapt to changing mechanical environments. This ability underscores the multifunctional nature of clathrin plaques, which, in addition to their role in endocytosis, are involved in cellular processes such as mechanotransduction and adhesion signaling. In summary, clathrin plaques represent a dynamic and versatile component of clathrin-mediated endocytosis. They play an integral role not only in the internalization of macromolecular cargo but also in regulating cellular adhesion, migration, and signal transduction. While much has been learned about their structural and functional properties, significant questions remain regarding the molecular mechanisms that regulate their formation and their broader role in cellular physiology. This review highlights the evolving understanding of clathrin plaques, emphasizing their importance in both endocytosis and a wide range of other cellular functions. Future research is needed to fully elucidate the mechanisms by which clathrin plaques contribute to cellular processes and to better understand their implications for diseases, including cancer and tissue remodeling. Ultimately, clathrin plaques are emerging as crucial hubs that integrate mechanical, biochemical, and signaling inputs, providing new insights into cellular function and the regulation of complex cellular behaviors.
3.Steroids combined with anticoagulant in acute/subacute severe cerebral venous thrombosis.
Shimin HU ; Yaqin GU ; Tingyu ZHAO ; Kaiyuan ZHANG ; Jingkai LI ; Chen ZHOU ; Haiqing SONG ; Zhi LIU ; Xunming JI ; Jiangang DUAN
Chinese Medical Journal 2025;138(15):1825-1834
BACKGROUND:
Inflammation plays a critical role in severe cerebral venous thrombosis (CVT) pathogenesis, but the benefits of anti-inflammatory therapies remain unclear. This study aimed to investigate the association between steroid therapy combined with anticoagulation and the prognosis of acute/subacute severe CVT patients.
METHODS:
A prospective cohort study enrolled patients with acute/subacute severe CVT at Xuanwu Hospital (July 2020-January 2024). Patients were allocated into steroid and non-steroid groups based on the treatment they received. Functional outcomes (modified Rankin scale [mRS]) were evaluated at admission, discharge, and 6 months after discharge. Serum high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), cerebrospinal fluid (CSF) IL-6, and intracranial pressure were measured at admission and discharge in the steroid group. Fundoscopic Frisén grades were assessed at admission and 6 months after discharge. Univariate and multivariate logistic regression were used to evaluat associations between steroid use and favorable outcomes (mRS ≤2) at the 6-month follow-up. Paired tests assessed changes in hs-CRP and other variables before and after treatment, and Spearman's correlations were used to analyze relationships between these changes and functional improvements.
RESULTS:
A total of 107 and 58 patients in the steroid and non-steroid groups, respectively, were included in the analysis. Compared with the non-steroid group, the steroid group had a higher likelihood of achieving an mRS score of 0-2 (93.5% vs . 82.5%, odds ratio [OR] = 2.98, P = 0.037) at the 6-month follow-up. After adjusting for confounding factors, the result remained consistent. Pulsed steroid therapy did not increase mortality during hospitalization or follow-up, nor did it lead to severe steroid-related complications (all P >0.05). Patients in the steroid group showed a significant reduction in serum hs-CRP, IL-6, CSF IL-6, and intracranial pressure at discharge compared to at admission, as well as a significant reduction in the fundoscopic Frisén grade at the 6-month follow-up compare to at admission (all P <0.001). A reduction in serum inflammatory marker levels during hospitalization positively correlated with improvements in functional outcomes ( P <0.05).
CONCLUSION:
Short-term steroid use may be an effective and safe adjuvant therapy for acute/subacute severe CVT when used alongside standard anticoagulant treatments, which are likely due to suppression of the inflammatory response. However, these findings require further validation in randomized controlled trials.
TRAIL REGISTRATION
ClinicalTrials.gov , NCT05990894.
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Anticoagulants/therapeutic use*
;
C-Reactive Protein/metabolism*
;
Interleukin-6/metabolism*
;
Intracranial Thrombosis/drug therapy*
;
Prospective Studies
;
Steroids/therapeutic use*
;
Venous Thrombosis/drug therapy*
4.Study on anti-depression effect of Suanzaoren Decoction based on liver metabolomics.
Jing LI ; Ya-Nan TONG ; Hong-Tao WANG ; Shao-Hua ZHAO ; Wei-Yan CHEN ; Zhi-Wei LI ; Min-Yan LIU
China Journal of Chinese Materia Medica 2025;50(1):19-31
To explore the anti-depression effect of Suanzaoren Decoction(SZRD), the regulatory effects on endogenous metabolites in the liver of rats with depression induced by chronic unpredictable mild stress(CUMS) were analyzed by using LC-MS metabolomics. The rats were randomly divided into normal control group, model group, low-dose SZRD group, high-dose SZRD group, and positive drug group. The CUMS depression model was replicated by applying a variety of stimuli, such as fasting and water deprivation, ice water swimming, hot water swimming, day and night reversal, tail clamping, and restraint for rats. Modeling and treatment were conducted for 56 days. The behavioral indexes of rats in each group, including body weight, open field test, sucrose preference test, and tail suspension test, were observed. Plasma samples and liver tissue samples were collected, and the contents of 5-hydroxytryptamine(5-HT), dopamine(DA), and norepinephrine(NE) in plasma were measured using enzyme-linked immunosorbent assay(ELISA). Meanwhile, the regulatory effects of SZRD on the liver metabolic profile of CUMS model rats were analyzed by the LC-MS metabolomics method. The results show that SZRD can significantly improve the depression-like behavior of CUMS model rats and increase the neurotransmitter levels of 5-HT, DA, and NE in plasma. A total of 24 different metabolites in the rats' liver are identified using the LC-MS metabolomics method, and SZRD can reverse 13 of these metabolites. Metabolic pathway analysis indicates that nine metabolic pathways are found to be significantly associated with depression, and in the low-dose SZRD group, four pathways can be regulated, including pentose phosphate pathway, purine metabolism, inositol phosphate metabolism, and sphingolipid metabolism. In the high-dose SZRD group, two metabolic pathways can be regulated, including sphingolipid metabolism and glycerol glycerophospholipid metabolism. Sphingolipid metabolism is a metabolic pathway that can be regulated by SZRD at different doses, so it is speculated that it may be the primary pathway through which SZRD can alleviate metabolic disturbances in the liver of CUMS model rats.
Animals
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Metabolomics
;
Depression/metabolism*
;
Male
;
Liver/drug effects*
;
Rats, Sprague-Dawley
;
Antidepressive Agents/administration & dosage*
;
Serotonin/blood*
;
Humans
;
Disease Models, Animal
;
Behavior, Animal/drug effects*
5.Buzhong Yiqi Decoction alleviates immune injury of autoimmune thyroiditis in NOD.H-2~(h4)mice via c GAS-STING signaling pathway.
Yi-Ran CHEN ; Lan-Ting WANG ; Qing-Yang LIU ; Zhao-Han ZHAI ; Shou-Xin JU ; Xue-Ying CHEN ; Zi-Yu LIU ; Xiao YANG ; Tian-Shu GAO ; Zhi-Min WANG
China Journal of Chinese Materia Medica 2025;50(7):1872-1880
This study aims to explore the effects of Buzhong Yiqi Decoction(BYD) on the cyclic guanosine monophosphate-adenosine monophosphate synthase(cGAS)-stimulator of interferon genes(STING) signaling pathway in the mouse model of autoimmune thyroiditis(AIT) and the mechanism of BYD in alleviating the immune injury. Forty-eight NOD.H-2~(h4) mice were assigned into normal, model, low-, medium-, and high-dose BYD, and selenium yeast tablets groups(n=8). Mice of 8 weeks old were treated with 0.05% sodium iodide solution for 8 weeks for the modeling of AIT and then administrated with corresponding drugs by gavage for 8 weeks before sampling. High performance liquid chromatography was employed to measure the astragaloside Ⅳ content in BYD. Hematoxylin-eosin staining was employed to observe the pathological changes in the mouse thyroid tissue. Enzyme-linked immunosorbent assay was employed to measure the serum levels of thyroid peroxidase antibody(TPO-Ab), thyroglobulin antibody(TgAb), and interferon-γ(IFN-γ). Flow cytometry was employed to detect the distribution of T cell subsets in the spleen. The immunohistochemical method was used to detect the expression of cGAS, STING, TANK-binding kinase 1(TBK1), and interferon regulatory factor 3(IRF3). Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of markers related to the cGAS-STING signaling pathway in the thyroid tissue. The results showed that the content of astragaloside Ⅳ in BYD was(7.06±0.08) mg·mL~(-1). Compared with the normal group, the model group showed disrupted structures of thyroid follicular epithelial cells, massive infiltration of lymphocytes, and elevated levels of TgAb and TPO-Ab. Compared with the model group, the four treatment groups showed intact epithelial cells, reduced lymphocyte infiltration, and lowered levels of TgAb and TPO-Ab. Compared with the normal group, the model group showed increases in the proportions of Th1 and Th17 cells, a decrease in the proportion of Th2 cells, and an increase in the IFN-γ level. Compared with the model group, the four treatment groups presented decreased proportions of Th1 and Th17 cells and lowered levels of IFN-γ, and the medium-dose BYD group showed an increase in the proportion of Th2 cells. Compared with the normal group, the modeling up-regulated the mRNA levels of cGAS, STING, TBK1, and IRF3 and the protein levels of cGAS, p-STING, p-TBK1, and p-IRF3. Compared with the model group, the four treatment groups showed reduced levels of cGAS, STING, TBK1, and IRF3-positive products, down-regulated mRNA levels of cGAS, STING, and TBK1, and down-regulated protein levels of cGAS and p-STING. The high-dose BYD group showed down-regulations in the mRNA level of IRF3 and the protein levels of p-TBK1 and p-IRF3. The above results indicate that BYD can repair the imbalance of T cell subsets, alleviate immune injury, and reduce thyroid lymphocyte infiltration in AIT mice by inhibiting the cGAS-STING signaling pathway.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Signal Transduction/drug effects*
;
Thyroiditis, Autoimmune/metabolism*
;
Mice
;
Membrane Proteins/metabolism*
;
Mice, Inbred NOD
;
Humans
;
Female
;
Nucleotidyltransferases/metabolism*
;
Male
;
Disease Models, Animal
6.Effect and mechanism of salt-processed Phellodendri Chinensis Cortex in improving insulin resistance based on network pharmacology and experimental verification.
Jin-Jie LEI ; Yang-Miao XIA ; Shang-Ling ZHAO ; Rui TAN ; Ling-Ying YU ; Zhi-Min CHEN
China Journal of Chinese Materia Medica 2025;50(9):2373-2381
This study explores the therapeutic differences and mechanisms of salt-processed Phellodendri Chinensis Cortex in improving insulin resistance(IR) based on network pharmacology, molecular docking, and cellular experiments. The components and intersection targets of Phellodendri Chinensis Cortex in improving IR were collected from databases, and a "drug-component-target-disease" network and protein-protein interaction(PPI) network were constructed to screen core components and targets. A total of 29 active components and 240 intersection targets were identified, of which 13 were core targets. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were used to identify key signaling pathways, and molecular docking was performed to validate the binding activity between core components and targets. An IR model in HepG2 cells was induced using insulin combined with high glucose, and the effects of Phellodendri Chinensis Cortex before and after salt-processing on cell glucose consumption were evaluated. The expression of proteins related to the mitogen-activated protein kinase(MAPK) and phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT) signaling pathways was detected by Western blot. The cellular experimental results showed that, compared with the model group, glucose consumption in the drug-treated groups was significantly increased(P<0.01), the phosphorylation level of extracellular regulated protein kinase(ERK) was decreased(P<0.05), the phosphorylation levels of PI3K and AKT were increased, and the expression of glucose transporter 4(GLUT4) was also upregulated(P<0.05). Furthermore, the effect of salt-processed Phellodendri Chinensis Cortex was better than that of raw Phellodendri Chinensis Cortex. The study demonstrates that Phellodendri Chinensis Cortex, both before and after salt-processing, improves IR by regulating the expression of related proteins in the MAPK and PI3K-AKT signaling pathways, with enhanced effects after salt-processing.
Humans
;
Network Pharmacology
;
Phellodendron/chemistry*
;
Insulin Resistance
;
Drugs, Chinese Herbal/chemistry*
;
Hep G2 Cells
;
Signal Transduction/drug effects*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Glucose/metabolism*
7.Mechanism of Quanduzhong Capsules in treating knee osteoarthritis from perspective of spatial heterogeneity.
Zhao-Chen MA ; Zi-Qing XIAO ; Chu ZHANG ; Yu-Dong LIU ; Ming-Zhu XU ; Xiao-Feng LI ; Zhi-Ping WU ; Wei-Jie LI ; Yi-Xin YANG ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2209-2216
This study aims to systematically characterize the targeted effects of Quanduzhong Capsules on cartilage lesions in knee osteoarthritis by integrating spatial transcriptomics data mining and animal experiments validation, thereby elucidating the related molecular mechanisms. A knee osteoarthritis model was established using Sprague-Dawley(SD) rats, via a modified Hulth method. Hematoxylin and eosin(HE) staining was employed to detect knee osteoarthritis-associated pathological changes in knee cartilage. Candidate targets of Quanduzhong Capsules were collected from the HIT 2.0 database, followed by bioinformatics analysis of spatial transcriptomics datasets(GSE254844) from cartilage tissues in clinical knee osteoarthritis patients to identify spatially specific disease genes. Furthermore, a "formula candidate targets-spatially specific genes in cartilage lesions" interaction network was constructed to explore the effects and major mechanisms of Quanduzhong Capsules in distinct cartilage regions. Experimental validation was conducted through immunohistochemistry using animal-derived biospecimens. The results indicated that Quanduzhong Capsules effectively inhibited the degenerative changes in the cartilage of affected joints in rats, which was associated with the regulation of Quanduzhong Capsules on the thioredoxin-interacting protein(TXNIP)-NOD-like receptor family pyrin domain containing 3(NLRP3)-bone morphogenetic protein receptor type 2(BMPR2)-fibronectin 1(FN1)-matrix metallopeptidase 2(MMP2) signal axis in the articular cartilage surface and superficial zones, subsequently inhibiting cartilage matrix degradation leading to oxidative stress and inflammatory diffusion. In summary, this study clarifies the spatially specific targeted effects and protective mechanisms of Quanduzhong Capsules within pathological cartilage regions in knee osteoarthritis, providing theoretical and experimental support for the clinical application of this drug in the targeted therapy on the inflamed cartilage.
Animals
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Male
;
Humans
;
Capsules
;
Female
;
Disease Models, Animal
8.Causal effects of chronic kidney disease on Alzheimer's disease and its prevention based on "kidney-brain interaction" theory.
Sen-Lin CHEN ; Zhi-Chen WANG ; Geng-Zhao CHEN ; Hang-Bin ZHENG ; Sai-E HUANG
China Journal of Chinese Materia Medica 2025;50(12):3431-3440
Based on the traditional Chinese medicine(TCM) theory of "kidney-brain interaction", a two-sample Mendelian randomization(MR) analysis was conducted to investigate the causal effects of chronic kidney disease(CKD) on Alzheimer's disease(AD) and analyze the potential mechanisms of kidney-tonifying and essence-replenishing TCM to improve AD. From the perspective that CKD is closely related to the core pathogenesis of AD, namely "kidney deficiency, essence loss, and marrow reduction", genome-wide association study(GWAS) data was used, with the inverse variance weighting(IVW) method as the main approach to reveal the causal association between CKD and AD. Sensitivity analysis was conducted to evaluate the robustness of the results. To further investigate the causal effects of CKD on AD, two different AD datasets were used as outcomes, and the urinary albumin-to-creatinine ratio(UACR) data was used as the exposure for a supplementary analysis. On this basis, the modern scientific mechanism of the kidney-tonifying and essence-replenishing method for improving AD was further explored. The IVW analysis show that CKD(ieu-b-2: OR=1.084, 95%CI[1.011, 1.163], P=0.024; ieu-b-5067: OR=1.001, 95%CI[1.000, 1.001], P=0.002) and UACR(ieu-b-2: OR=1.247, 95%CI[1.021, 1.522], P=0.031; ieu-b-5067: OR=1.001, 95%CI[1.000, 1.003], P=0.015) both have significant causal effects on AD in different datasets, with CKD increasing the risk of AD. The sensitivity analysis further confirmed the reliability of the results. Genetic studies have shown that CKD has a significant causal effect on AD, suggesting that controlling CKD is an important intervention measure for preventing and treating AD. Therefore, further research on CKD's role in AD is crucial in clinical practice. The research enriches the theoretical implication of "kidney-brain interaction", deepens the understanding of AD' etiology, and provides further insights and directions for the prevention and treatment of AD with TCM, specifically from a kidney-based perspective.
Humans
;
Alzheimer Disease/genetics*
;
Renal Insufficiency, Chronic/genetics*
;
Kidney/metabolism*
;
Brain/physiopathology*
;
Genome-Wide Association Study
;
Medicine, Chinese Traditional
;
Mendelian Randomization Analysis
9.Biomechanical study of lumbar vertebra during gait cycle in adolescent idiopathic scoliosis.
Yunxin WANG ; Ping XU ; Yingsong WANG ; Yingliang LIU ; Shisen XU ; Zhi ZHAO ; Hongfei LI ; Xiaoming CHEN
Journal of Biomedical Engineering 2025;42(3):601-609
In order to investigate the mechanical response of lumbar vertebrae during gait cycle in adolescents with idiopathic scoliosis (AIS), the present study was based on computed tomography (CT) data of AIS patients to construct model of the left support phase (ML) and model of the right support phase (MR), respectively. Firstly, material properties, boundary conditions and load loading were set to simulate the lumbar vertebra-pelvis model. Then, the difference of stress and displacement in the lumbar spine between ML and MR was compared based on the stress and displacement cloud map. The results showed that in ML, the lumbar stress was mostly distributed on the convex side, while in MR, it was mostly distributed on the concave side. The stress of the two types of stress mainly gathered near the vertebral arch plate, and the stress of the vertebral arch plate was transmitted to the vertebral body through the pedicle with the progress of gait. The average stress of the intervertebral tissue in MR was greater than that in ML, and the difference of stress on the convex and convex side was greater. The displacement of lumbar vertebrae in ML decreased gradually from L1 to L5. The opposite is true in MR. In conclusion, this study can accurately quantify the stress on the lumbar spine during gait, and may provide guidance for brace design and clinical decision making.
Humans
;
Lumbar Vertebrae/diagnostic imaging*
;
Scoliosis/diagnostic imaging*
;
Adolescent
;
Gait/physiology*
;
Biomechanical Phenomena
;
Tomography, X-Ray Computed
;
Stress, Mechanical
;
Female
;
Male
10.Clinical efficacy of open reduction and internal fixation with plates versus minimally invasive Kirschner wire fixation for osteoporotic Colles' fractures.
Jun-Wei ZHANG ; Jin-Yong HOU ; Zhao-Hui LI ; Zhen-Yuan MA ; Xiang GAO ; Hong-Zheng BI ; Ling-Ling CHEN ; Hai-Tao WANG ; Wei-Zhi NIE ; Yong-Zhong CHENG ; Xiao-Bing XI
China Journal of Orthopaedics and Traumatology 2025;38(1):18-24
OBJECTIVE:
To compare the short-term clinical efficacy and safety of closed reduction with Kirschner wire fixation versus open reduction with plate fixation for treating osteoporotic Colles' fractures in middle-aged and elderly patients.
METHODS:
Between January 2018 and January 2023, 119 patients with Colles fractures were retrospectively analyzed, including 39 males and 80 females, aged from 48 to 74 years old with an average of(60.58±6.71) years old. The time from injury to operation ranged 1 to 13 days with an average of (5.29±2.52) days. According to the surgical method, they were divided into Kirschner wire fixation group (Kirschner wire group) and plate internal fixation group (plate group). In Kirschner wire group, there were a total of 68 patients, comprising 21 males and 47 females. The average age was (61.15±6.24) years old, ranged from 49 to 74 years old. Among them, 41 cases involved the left side while 27 cases involved the right side. In the plate group, there were a total of 51 patients, including 18 males and 33 females. The average age was (59.78±5.71) years old ranged from 48 to 72 years old. Among them, there were 31 cases on the left side and 20 cases on the right side. The following parameters were recorded before and after the operation:operation time, intraoperative blood loss, hospitalization days, hospitalization expenses, postoperative complications, and radiographic parameters of distal radius (distal radius height, ulnar deviation angle, palmar tilt angle). The clinical efficacy was evaluated at 3 and 12 months after the operation using Gartland-Werley and disabilites of the arm shoulder and hand (DASH) scores.
RESULTS:
The patients in both groups were followed up for a duration from 12 to 19 months with an average of(13.32±2.02) months. The Kirschner wire group exhibited significantly shorter operation time compared to the plate group 27.91(13.00, 42.00) min vs 67.52(29.72, 105.32) min, Z=-8.74, P=0.00. Intraoperative blood loss was also significantly lower in the Kirschner wire group than in the plate group 3.24(1.08, 5.40) ml vs 21.91(17.38, 26.44) ml, Z=-9.31, P=0.00. Furthermore, patients in the Kirschner wire group had a shorter length of hospital stay compared to those in the plate group (8.38±2.63) days vs (11.40±2.78) days, t=-3.12, P=0.00. Additionally, hospitalization cost was significantly lower in the Kirschner wire group than in the plate group 10 111.29(6 738.98, 13 483.60) yuan vs 15 871.11(11 690.40, 20 051.82) yuan, Z=-5.62, P=0.00. The incidence of complications was 2 cases in the Kirschner wire group and 1 case in the plate group, with no statistically significant difference(P>0.05). At 3 months postoprative, the radial height of the Kirschner wire group was found to be significantly smaller than that of the plate group, with measurements of (11.45±1.69) mm and (12.11±1.78) mm respectively (t=-2.06, P=0.04). However, there were no statistically significant differences observed in ulnar deviation angle and palmar tilt angle between the two groups (P>0.05). The DASH score and Gartland-Werley score in the Kirschner group were significantly higher than those in the plate group at 3 months post-operation (19.10±9.89) vs (13.47±3.51), t=4.34, P=0.00;(11.15±3.61) vs (6.41±2.75), t=8.13, P=0.00). However, there was no significant difference between the two groups at 12 months post-operation (P>0.05).
CONCLUSION
Compared to plate internal fixation, closed reduction with Kirschner wire support fixation yields a slightly inferior recovery of radial height;however, there is no significant disparity in the functional score of the affected limb at 12 months post-operation. Nonetheless, this technique offers advantages such as shorter operation time, reduced intraoperative blood loss, decreased hospitalization duration, and lower cost.
Humans
;
Female
;
Male
;
Middle Aged
;
Aged
;
Fracture Fixation, Internal/instrumentation*
;
Bone Wires
;
Bone Plates
;
Retrospective Studies
;
Colles' Fracture/surgery*
;
Minimally Invasive Surgical Procedures/methods*
;
Open Fracture Reduction/methods*
;
Osteoporotic Fractures/surgery*

Result Analysis
Print
Save
E-mail