1.The Functional Diversity and Regulatory Mechanism of Clathrin Plaques
Yi-Ge ZHAO ; Zhao-Hong JIANG ; Qian-Yi ZHOU ; Zhi-Ming CHEN
Progress in Biochemistry and Biophysics 2025;52(8):1958-1971
Clathrin-mediated endocytosis (CME) is a critical process by which cells internalize macromolecular substances and initiate vesicle trafficking, serving as the foundation for many cellular activities. Central to this process are clathrin-coated structures (CCSs), which consist of clathrin-coated pits (CCPs) and clathrin plaques. While clathrin-coated pits are well-established in the study of endocytosis, clathrin plaques represent a more recently discovered but equally important component of this system. These plaques are large, flat, and extended clathrin-coated assemblies found on the cytoplasmic membrane. They are distinct from the more typical clathrin-coated pits in terms of their morphology, larger surface area, and longer lifespan. Recent research has revealed that clathrin plaques play roles that go far beyond endocytosis, contributing to diverse cellular processes such as cellular adhesion, mechanosensing, migration, and pathogen invasion. Unlike traditional clathrin-coated pits, which are transient and dynamic structures involved primarily in the internalization of molecules, clathrin plaques are more stable and extensive, often persisting for extended periods. Their extended lifespan suggests that they serve functions beyond the typical endocytic role, making them integral to various cellular processes. For instance, clathrin plaques are involved in the regulation of intercellular adhesion, allowing cells to better adhere to one another or to the extracellular matrix, which is crucial for tissue formation and maintenance. Furthermore, clathrin plaques act as mechanosensitive hubs, enabling the cell to sense and respond to mechanical stress, a feature that is essential for processes like migration, tissue remodeling, and even cancer progression. Recent discoveries have also highlighted the role of clathrin plaques in cellular signaling. These plaques can serve as scaffolds for signaling molecules, orchestrating the activation of various pathways that govern cellular behavior. For example, the recruitment of actin-binding proteins such as F-actin and vinculin to clathrin plaques can influence cytoskeletal dynamics, helping cells adapt to mechanical changes in their environment. This recruitment also plays a pivotal role in regulating cellular migration, which is crucial for developmental processes. Additionally, clathrin plaques influence receptor-mediated signal transduction by acting as platforms for the assembly of signaling complexes, thereby affecting processes such as growth factor signaling and cellular responses to extracellular stimuli. Despite the growing body of evidence that supports the involvement of clathrin plaques in a wide array of cellular functions, much remains unknown about the precise molecular mechanisms that govern their formation, maintenance, and turnover. For example, the factors that regulate the recruitment of clathrin and other coat proteins to form plaques, as well as the signaling molecules that coordinate plaque dynamics, remain areas of active research. Furthermore, the complex interplay between clathrin plaques and other cellular systems, such as the actin cytoskeleton and integrin-based adhesion complexes, needs further exploration. Studies have shown that clathrin plaques can respond to mechanical forces, with recent findings indicating that they act as mechanosensitive structures that help the cell adapt to changing mechanical environments. This ability underscores the multifunctional nature of clathrin plaques, which, in addition to their role in endocytosis, are involved in cellular processes such as mechanotransduction and adhesion signaling. In summary, clathrin plaques represent a dynamic and versatile component of clathrin-mediated endocytosis. They play an integral role not only in the internalization of macromolecular cargo but also in regulating cellular adhesion, migration, and signal transduction. While much has been learned about their structural and functional properties, significant questions remain regarding the molecular mechanisms that regulate their formation and their broader role in cellular physiology. This review highlights the evolving understanding of clathrin plaques, emphasizing their importance in both endocytosis and a wide range of other cellular functions. Future research is needed to fully elucidate the mechanisms by which clathrin plaques contribute to cellular processes and to better understand their implications for diseases, including cancer and tissue remodeling. Ultimately, clathrin plaques are emerging as crucial hubs that integrate mechanical, biochemical, and signaling inputs, providing new insights into cellular function and the regulation of complex cellular behaviors.
2.Effectiveness of autologous platelet-rich plasma for blood conservation and its prognostic impact in patients with type A aortic dissection
Qian ZHENG ; Shoumei CHEN ; Ming XIE ; Shenshen ZHI ; Kun LIU ; Ting JIANG
Chinese Journal of Blood Transfusion 2025;38(8):1035-1042
Objective: To investigate the effects of autologous platelet-rich plasma (aPRP) collected using a continuous blood cell separator on blood conservation and prognosis in patients with type A aortic dissection. Methods: The clinical data of patients who underwent emergency aortic replacement for acute type A aortic dissection at our hospital from January 2020 to December 2023 were respectively analyzed. Patients were divided into two groups based on whether they received aPRP collection before surgery for subsequent reinfusion: the aPRP group (n=32) and the control group (n=35). The volume of aPRP collected and the platelet concentration in the aPRP were recorded. The volumes of allogeneic blood and blood products transfused, and the associated costs during hospitalization were compared between two groups. Intraoperative blood loss, perioperative laboratory parameter changes, 24-hour postoperative drainage volume, duration of ICU stay and mechanical ventilation, length of hospital stay, and mortality rate of the two groups were also compared. Results: The platelet concentration in aPRP was (491.5±85.4)×10
/L, accounting for (24.1±9.6)% of the patient's total platelet count. The volume of aPRP collected accounted for (23.0±6.3)% of the patient's total plasma volume. Compared with the control group, the aPRP group demonstrated significantly reduced transfusion volumes of allogeneic red blood cells, plasma, and platelets (P<0.05), along with significantly lower blood-related costs during hospitalization (P<0.05). Postoperative coagulation parameters (APTT, PT, INR, and TEG) were significantly improved (P<0.05), and platelet counts were markedly increased (P<0.05) in aPRP group as compared with the control group. No statistically significant differences were observed in postoperative use of prothrombin complex concentrate and fibrinogen between the two groups. Similarly, there were no significant differences in postoperative 24-hour drainage volume, 24-hour extubation rate, ICU length of stay, duration of mechanical ventilation, or total hospital length of stay. The incidence of complications and mortality did not differ significantly between the two groups. Conclusion: The administration of aPRP significantly reduces the requirement for perioperative allogeneic blood transfusion in patients undergoing surgery for type A aortic dissection. Furthermore, it enhances coagulation function and reduces associated transfusion costs, thereby establishing itself as an effective and safe strategy for blood conservation.
3.Forty years of construction and innovative development of scientific regulation system of traditional Chinese medicine in China.
Jun-Ning ZHAO ; Zhi-Shu TANG ; Hua HUA ; Rong SHAO ; Jiang-Yong YU ; Chang-Ming YANG ; Shuang-Fei CAI ; Quan-Mei SUN ; Dong-Ying LI
China Journal of Chinese Materia Medica 2025;50(13):3489-3505
Since the promulgation of the first Drug Administration Law of the People's Republic of China 40 years ago in 1984, China has undergone four main stages in the traditional Chinese medicine(TCM) regulation: the initial establishment of TCM regulation rules(1984-1997), the formation of a modern TCM regulatory system(1998-2014), the reform of the review and approval system for new TCM drugs(2015-2018), and the construction of a scientific regulation system for TCM(2019-2024). Over the past five years, a series of milestone achievements of TCM regulation in China have been achieved in the six aspects, including its strategic objectives and the establishment of a science-based regulatory system, the reform of the review and approval system for new TCM drugs, the optimization and improvement of the TCM standard system and its formation mechanism, comprehensive enhancement of regulatory capabilities for TCM safety, international harmonization of TCM regulation and its role in promoting innovation. Looking ahead, centered on advancing TCMRS to establish a sound regulatory framework tailored to the unique characteristics of TCM, TCM regulation will evolve into new reform patterns, advancing and extending across eight critical fronts, including the legal framework and policy architecture, the review and approval system for new TCM drugs, the quality standard and management system of TCM, the comprehensive quality & safety regulation and traceability system, the research and transformation system for TCMRS, AI-driven innovations in TCM regulation, the coordination between high-quality industrial development and high-level regulation, and the leadership in international cooperation and regulatory harmonization. In this way, a unique path for the development of modern TCM regulation with Chinese characteristics will be pioneered.
Humans
;
China
;
Drugs, Chinese Herbal/standards*
;
History, 20th Century
;
History, 21st Century
;
Medicine, Chinese Traditional/trends*
4.Orthopedic manipulation combined with percutaneous reduction and Kirschner wire internal fixation for Sanders typeⅡand Ⅲ calcaneal fractures.
Feng DAI ; Jin-Tao LIU ; Zhi-Gang ZHANG ; Xue-Qiang SHEN ; Li-Ming WU ; Peng-Fei YU ; Hong JIANG
China Journal of Orthopaedics and Traumatology 2025;38(3):306-310
OBJECTIVE:
To explore clinical effects of bone setting manipulation combined with pry reduction and Kirschner needle internal fixation in treating SandersⅡ-Ⅲ calcaneal fracture.
METHODS:
Clinical data of 52 patients with types Sanders Ⅱand Ⅲ calcaneal fracture (foot) treated with bone-setting manipulation combined with pry reduction and Kirscher needle internal fixation from July 2017 to July 2019 were retrospectively analyzed, including 43 males and 9 females, aged from 31 to 72 years old with an average of (50.83±10.48) years old; 15 patients with Sanders typeⅡ and 37 patients with Sanders type Ⅲ. The changes of Bühler angle, Gissane angle, calcaneus width and calcaneus height before operation and 24 months after operation were compared, and Maryland foot function score was performed to evaluate clinical effects.
RESULTS:
All patients were followed up from 24 to 60 months with an average of (41.50±9.86)months. The fracture healed normally and the healing time was (11.00±0.95) weeks. Bühler angle, Gissane angle, calcaneal bone width and calcaneal bone height were increased from (16.37±8.36)°, (96.27±9.62)°, (46.82±4.67) mm, (38.41±3.58) mm before operation to (31.48±8.24)°, (111.62±8.69)°, (42.06±4.83) mm, (44.21±3.82) mm at 24 months after operation, and the difference were statistically significant (P<0.01). Postoperative Maryland score at 24 months was (93.04±8.83), 40 patients got excellent result, 7 good and 5 fair.
CONCLUSION
Orthopedic manipulation combined with percutaneous reduction and Kirschner wire internal fixation could significantly improve Bühler angle, Gissane angle, width, and height of Sanders typeⅡ and Ⅲ calcaneal fractures, and the curative effect is satisfactory.
Humans
;
Male
;
Female
;
Calcaneus/surgery*
;
Middle Aged
;
Fracture Fixation, Internal/methods*
;
Adult
;
Aged
;
Fractures, Bone/therapy*
;
Retrospective Studies
;
Bone Wires
;
Manipulation, Orthopedic/methods*
5.Experimental study on autologous osteochondral transplantation in the treatment of recurrent anterior dislocation of the shoulder joint with articular cartilage defect in rabbits.
Tao LIU ; Sen FANG ; Fang-Xiang LIU ; Ming-Tao ZHANG ; Zhi-Tao YANG ; Bo-Rong ZHANG ; Jun-Wen LIANG ; Xi-Hao WANG ; Jin JIANG ; Xiang-Dong YUN
China Journal of Orthopaedics and Traumatology 2025;38(6):619-625
OBJECTIVE:
To explore clinical effect of autologous osteochondral transplantation (AOT) in the treatment of recurrent anterior dislocation of the shoulder joint with glenoid cartilage defect in rabbits by establishing a model of recurrent anterior dislocation of the shoulder joint with < 20% glenoid cartilage defect in rabbits.
METHODS:
Twenty-four male New Zealand white rabbits, aged 6-month-old, weighed (2.69±0.17) kg were selected. The labrum of shoulder joint of rabbits was artificially destroyed to establish a model of recurrent anterior dislocation of shoulder joint with cartilage defect. They were divided into AOT surgery group and simple suture group, with 12 rabbits in each group. AOT group were underwent AOT surgery, while simple suture group was treated with simple Bankart suture for recurrent shoulder joint dislocation. At 6 and 12 weeks after operation, 6 rabbits between two groups were sacrificed for sampling. The dietary conditions, activity conditions, mental states of rabbits and healing conditions of grafts in the specimens were observed and compared between two groups. HE staining was used to observe cell creep, cell morphology, inflammatory cell infiltration, fibrochondrocytes and their arrangement. Masson staining was used to observe the formation and arrangement of collagen fibers; Safrane-green staining was used to observe the regeneration of articular cartilage, subchondral bone and bone tissue. Bone mineral density (BMD), bone volume (BV) and trabecular thickness (Tb.Th) between two groups were measured by Micro-CT to evaluate the remodeling of shoulder glenoid bone defects by autologous osteochondral cartilage.
RESULTS:
After different surgical interventions were carried out in both groups of rabbits, at 6 weeks after the operation, the abduction, extension, internal rotation and external rotation of the shoulder joint on the operated side showed limited range of motion compared with the contralateral side, while adduction and forward flexion showed no obvious abnormalities compared with the contralateral side. At 12 weeks after operation, the range motion of tshoulder joints in both groups of rabbits had returned to the state before modeling. The effects of HE staining, Masson staining and safrane-green staining at 12 weeks after operation in both groups were stronger than the staining results at 6 weeks after operation. Moreover, the results of HE staining, Masson staining and safranin fixation green staining in AOT group at 6 and 12 weeks after operation were all higher than those in simple suture group. Micro-CT scan results at 6 and 12 weeks after operation showed that BMD (0.427±0.014), (0.466±0.032) g·cm-3, BV(116.171±3.527), (159.327±3.500) mm3, and Tb.Th (0.230±0.006), (0.285±0.009) mm in AOT group, which were higher than those of simple suture group in BMD(0.358±0.011), (0.384±0.096) g·cm-3, BV(72.657±3.903), (118.713±3.860) mm3, and Tb.Th(0.204±0.009), (0.243±0.007) mm;and the differences were statistically significant (P<0.05).
CONCLUSION
AOT procedure could effectively promote osteogenesis and fibrocartilage regeneration in the cartilage defect area of the shoulder glenoid <20%, which is conducive to reshaping the structure of the shoulder glenoid.
Animals
;
Rabbits
;
Male
;
Transplantation, Autologous
;
Cartilage, Articular/injuries*
;
Shoulder Dislocation/physiopathology*
;
Bone Transplantation
;
Shoulder Joint/surgery*
6.Clinical effects of single Kirschner wire assisted reduction in children with Gartland type Ⅲ supracondylar humerus fractures.
Yong HE ; Wei-Ping LI ; Zhi-Long CHEN ; Guo-Peng JIANG ; Shi-Hai CHEN ; Jun ZHAO ; Hua-Ming WANG ; Chen ZHANG
China Journal of Orthopaedics and Traumatology 2025;38(10):1071-1075
OBJECTIVE:
To investigate the clinical efficacy and safety of single Kirschner wire assisted poking and closed reduction in the treatment of Gartland type Ⅲ supracondylar humeral fractures in children.
METHODS:
A retrospective analysis was performed on patients diagnosed with Gravland type Ⅲ supracondylar humeral fractures between January 2022 and June 2023. A total of 46 patients were treated with closed reduction assisted by Kirschner wires and percutaneous Kirschner wire internal fixation.There were 25 males and 21 females. The age ranged from 5 to 10 years old, with an average of (5.8±1.8) years old. The left side was involved in 28 patients and the right side in 18 patients. Record the operative duration for patients, the number of fluoroscopic exposures, fracture healing time, postoperative carrying angle, Baumann angle, elbow joint function score at three months post-operation, and any associated complications.
RESULTS:
All 46 patients were followed up for a period of 12 to 16 weeks, with an average of (13.74±1.44 )weeks. The operation duration was (30.7±5.1) minutes, the fluoroscopy count was (10.2±2.7) times, the postoperative carrying angle of the elbow joint was (8.7±2.2) degrees, and the Baumann angle was (71.5±2.9) degrees. All fractures achieved successful union in all patients, with a mean healing time of (25.5±1.7) days.At the final follow-up, elbow joint function was assessed using the Flynn criteria, with 43 patients rated as excellent and 3 patients rated as good. No complications were observed, including cubitus varus, nerve injury, or local infection.
CONCLUSION
The use of a single Kirschner wire assisted prying reduction for treating Gartland type Ⅲ supracondylar humeral fractures in children demonstrates excellent clinical efficacy and safety.
Humans
;
Male
;
Female
;
Child
;
Bone Wires
;
Child, Preschool
;
Humeral Fractures/physiopathology*
;
Retrospective Studies
;
Fracture Fixation, Internal/instrumentation*
;
Treatment Outcome
;
Fracture Healing
7.Multiple biomarkers risk score for accurately predicting the long-term prognosis of patients with acute coronary syndrome.
Zhi-Yong ZHANG ; Xin-Yu WANG ; Cong-Cong HOU ; Hong-Bin LIU ; Lyu LYU ; Mu-Lei CHEN ; Xiao-Rong XU ; Feng JIANG ; Long LI ; Wei-Ming LI ; Kui-Bao LI ; Juan WANG
Journal of Geriatric Cardiology 2025;22(7):656-667
BACKGROUND:
Biomarkers-based prediction of long-term risk of acute coronary syndrome (ACS) is scarce. We aim to develop a risk score integrating clinical routine information (C) and plasma biomarkers (B) for predicting long-term risk of ACS patients.
METHODS:
We included 2729 ACS patients from the OCEA (Observation of cardiovascular events in ACS patients). The earlier admitted 1910 patients were enrolled as development cohort; and the subsequently admitted 819 subjects were treated as validation cohort. We investigated 10-year risk of cardiovascular (CV) death, myocardial infarction (MI) and all cause death in these patients. Potential variables contributing to risk of clinical events were assessed using Cox regression models and a score was derived using main part of these variables.
RESULTS:
During 16,110 person-years of follow-up, there were 238 CV death/MI in the development cohort. The 7 most important predictors including in the final model were NT-proBNP, D-dimer, GDF-15, peripheral artery disease (PAD), Fibrinogen, ST-segment elevated MI (STEMI), left ventricular ejection fraction (LVEF), termed as CB-ACS score. C-index of the score for predication of cardiovascular events was 0.79 (95% CI: 0.76-0.82) in development cohort and 0.77 (95% CI: 0.76-0.78) in the validation cohort (5832 person-years of follow-up), which outperformed GRACE 2.0 and ABC-ACS risk score. The CB-ACS score was also well calibrated in development and validation cohort (Greenwood-Nam-D'Agostino: P = 0.70 and P = 0.07, respectively).
CONCLUSIONS
CB-ACS risk score provides a useful tool for long-term prediction of CV events in patients with ACS. This model outperforms GRACE 2.0 and ABC-ACS ischemic risk score.
8.Zedoarondiol Inhibits Neovascularization in Atherosclerotic Plaques of ApoE-/- Mice by Reducing Platelet Exosomes-Derived MiR-let-7a.
Bei-Li XIE ; Bo-Ce SONG ; Ming-Wang LIU ; Wei WEN ; Yu-Xin YAN ; Meng-Jie GAO ; Lu-Lian JIANG ; Zhi-Die JIN ; Lin YANG ; Jian-Gang LIU ; Da-Zhuo SHI ; Fu-Hai ZHAO
Chinese journal of integrative medicine 2025;31(3):228-239
OBJECTIVE:
To investigate the effect of zedoarondiol on neovascularization of atherosclerotic (AS) plaque by exosomes experiment.
METHODS:
ApoE-/- mice were fed with high-fat diet to establish AS model and treated with high- and low-dose (10, 5 mg/kg daily) of zedoarondiol, respectively. After 14 weeks, the expressions of anti-angiogenic protein thrombospondin 1 (THBS-1) and its receptor CD36 in plaques, as well as platelet activation rate and exosome-derived miR-let-7a were detected. Then, zedoarondiol was used to intervene in platelets in vitro, and miR-let-7a was detected in platelet-derived exosomes (Pexo). Finally, human umbilical vein endothelial cells (HUVECs) were transfected with miR-let-7a mimics and treated with Pexo to observe the effect of miR-let-7a in Pexo on tube formation.
RESULTS:
Animal experiments showed that after treating with zedoarondiol, the neovascularization density in plaques of AS mice was significantly reduced, THBS-1 and CD36 increased, the platelet activation rate was markedly reduced, and the miR-let-7a level in Pexo was reduced (P<0.01). In vitro experiments, the platelet activation rate and miR-let-7a levels in Pexo were significantly reduced after zedoarondiol's intervention. Cell experiments showed that after Pexo's intervention, the tube length increased, and the transfection of miR-let-7a minics further increased the tube length of cells, while reducing the expressions of THBS-1 and CD36.
CONCLUSION
Zedoarondiol has the effect of inhibiting neovascularization within plaque in AS mice, and its mechanism may be potentially related to inhibiting platelet activation and reducing the Pexo-derived miRNA-let-7a level.
Animals
;
MicroRNAs/genetics*
;
Exosomes/drug effects*
;
Plaque, Atherosclerotic/genetics*
;
Neovascularization, Pathologic/genetics*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Humans
;
Blood Platelets/drug effects*
;
Apolipoproteins E/deficiency*
;
Thrombospondin 1/metabolism*
;
CD36 Antigens/metabolism*
;
Platelet Activation/drug effects*
;
Male
;
Mice
;
Mice, Inbred C57BL
9.Studies on The Interaction Between DnaG Primase and ssDNA Template in Mycobacterium tuberculosis
Jiang CHEN ; Hao LUO ; Zhi-Ming ZHANG ; Xu SONG ; Gang-Gang WANG
Progress in Biochemistry and Biophysics 2024;51(8):1920-1934
ObjectiveDnaG primase in Mycobacterium tuberculosis (MtuDnaG) plays a vital role in DNA replication, making it a target for novel antituberculosis drug discovery. However, the mechanism of MtuDnaG priming is not fully understood, which hinders the screening of MtuDnaG inhibitors. In this work, the specific recognition sites (SRS) in ssDNA for MtuDnaG binding was investigated and the interactions between MtuDnaG and ssDNA template was discussed. MethodsBy biochemical and biophysical methods, the binding of the didomain of MtuDnaG (MtuP49, containing the zinc-binding domain and RNA polymerase domain) to ssDNA template with various trinucleotide sites was evaluated, the affinity of MtuP49 to ssDNA template was measured. ResultsThe present study suggested the 5'-GCG/C-3' as the potential SRS in ssDNA for specific binding to MtuDnaG. Besides,5'-GCG/C-3' sites were further identified within the oriC region of M. tuberculosis genome. Importantly, the 3' sequence flanking the 5'-GCG/C-3' site markedly affected the binding affinity of ssDNA to MtuP49. Mutagenesis studies showed that substitution of residue Arg31 in the zinc-binding domain affected the binding activity of MtuP49 to template ssDNA. Combined with the predicted structure of MtuP49, an intramolecular rearrangement of zinc-binding domain relative to the RNA polymerase domain was implied to be essential in the binding of MtuP49 to template ssDNA. ConclusionThis study firstly identified the SRS in ssDNA for MtuDnaG binding, the key factors affecting MtuDnaG binding to ssDNA was revealed. The above results provide evidence to shed light on the mechanism of MtuDnaG priming, and pave the way for development of novel DnaG-targeted antituberculosis drugs.
10.Functions of Dynamin and Its Family Proteins
Zi-Yan YANG ; Zhao-Hong JIANG ; Qian-Yi ZHOU ; Zhi-Ming CHEN
Progress in Biochemistry and Biophysics 2024;51(11):2821-2831
The dynamin superfamily protein (DSP) encompasses a group of large GTPases that are involved in various membrane remodeling processes within the cell. These proteins are characterized by their ability to hydrolyze GTP, which provides the energy necessary for their function in membrane fission, fusion, and tubulation activities. Dynamin superfamily proteins play critical roles in cellular processes such as endocytosis, organelle division, and vesicle trafficking. It is typically classified into classical dynamins and dynamin-related proteins (Drp), which have distinct roles and structural features. Understanding these proteins is crucial for comprehending their functions in cellular processes, particularly in membrane dynamics and organelle maintenance. Classical dynamins are primarily involved in clathrin-mediated endocytosis (CME), a process crucial for the internalization of receptors and other membrane components from the cell surface into the cell. These proteins are best known for their role in pinching off vesicles from the plasma membrane. Structually, classical dynamins are composed of a GTPase domain, a middle domain, a pleckstrin homology (PH) domain that binds phosphoinositides, a GTPase effector domain (GED), and a proline-rich domain (PRD) that interacts with SH3 domain-containing proteins. Functionally, the classical dynamins wrap around the neck of budding vesicles, using GTP hydrolysis to constrict and eventually acting as a “membrane scissor” to cut the vesicle from the membrane. In mammals, there are three major isoforms: dynamin 1 (predominantly expressed in neurons), dynamin 2 (ubiquitously expressed), and dynamin 3 (expressed in testes, lungs, and neurons). Recent studies have also revealed some non-classical functions of classical dynamins, such as regulating the initiation and stabilization of clathrin-coated pits (CCPs) at the early stages of CME, influencing the formation of the actin cytoskeleton and cell division. Drps share structural similarities with classical dynamins but are involved in a variety of different cellular processes, primarily related to the maintenance and remodeling of organelles, and can be mainly categorized into “mediating membrane fission”, “mediating membrane fusion” and “non-membrane-dependent functions”. Proteins like Drp1 are crucial for mitochondrial division, while others like Fis1, Mfn1, and Mfn2 are involved in mitochondrial and peroxisomal fission and fusion processes, which are essential for the maintenance of mitochondrial and peroxisomal integrity and affect energy production and apoptosis. Proteins like the Mx protein family exhibit antiviral properties by interfering with viral replication or assembly, which is critical for the innate immune response to viral infections. Some other proteins are involved in the formation of tubular structures from membranes, which is crucial for the maintenance of organelle morphology, particularly in the endoplasmic reticulum and Golgi apparatus. Studies on dynamin superfamily proteins have been extensive and have significantly advanced our understanding of cellular biology, disease mechanisms, and therapeutic potential. These studies encompass a broad range of disciplines, including molecular biology, biochemistry, cell biology, genetics, and pharmacology. By comprehensively summarizing and organizing the structural features and functions of various members of the dynamin superfamily protein, this review not only deepens the understanding of its molecular mechanisms, but also provides valuable insights for clinical drug research related to human diseases, potentially driving further advancements in the field.

Result Analysis
Print
Save
E-mail