1.Exploration of Traditional Chinese Medicine Syndrome Characteristics in A Heart Failure Model Induced by Coronary Artery Ligation Based on Method of Syndrome Identification by Prescription Efficacy
Xiaoqian LIAO ; Peiyao LI ; Xingyu FAN ; Zhenyu ZHAO ; Junyu ZHANG ; Yuehang XU ; Zhixi HU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):169-177
Chronic heart failure (CHF) is a major global public health problem, and myocardial infarction is one of its main causes. The mouse model of heart failure induced by coronary artery ligation is widely used in the study of CHF, while the TCM syndrome attributes of this model have not yet been clarified. According to the theory of correspondence between prescriptions and syndromes, the method of syndrome identification by prescription efficacy is an important means of current syndrome research of animal models. This method deduces the syndrome characteristics of animal models through prescription efficacy. Taking the four basic syndrome elements of Qi, blood, Yin and Yang as the classification reference, this study used coronary artery ligation to construct a mouse model of CHF and treated the model with four representative TCM injections with the effects of replenishing Qi, warming Yang, nourishing Yin, and activating blood and enalapril. Echocardiography, tongue color parameters, histopathology, serum N-terminal pro-brain natriuretic peptide (NT-proBNP) and cardiac troponin Ⅰ (cTnⅠ) levels, and systematically explored the TCM syndrome attributes of this model. The results showed that the coronary ligation model presented an obvious cardiac function decline, myocardial fibrosis, infarct size expansion, and purple dark tongue, which were consistent with the basic syndrome characteristics of blood stasis in CHF. Danhong injection had significant effects of improving the cardiac function, alleviating myocardial fibrosis, and reducing serum NT-proBNP and cTnⅠ levels. Huangqi Injection and Shenfu injection can improve the cardiac function and tongue color parameters, with limited effects. The effect of Shenmai injection group was not obvious. This study verifies that the established model conforms to blood stasis syndrome through the method of syndrome identification by prescription efficacy, which provides an experimental basis for the study of TCM syndrome mechanism of CHF.
2.Myocardial Metabolomics Reveals Mechanism of Shenfu Injection in Ameliorating Energy Metabolism Remodeling in Rat Model of Chronic Heart Failure
Xinyue NING ; Zhenyu ZHAO ; Mengna ZHANG ; Yang GUO ; Zhijia XIANG ; Kun LIAN ; Zhixi HU ; Lin LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):178-186
ObjectiveTo examine the influences of Shenfu injection on the endogenous metabolic byproducts in the myocardium of the rat model exhibiting chronic heart failure, thus deciphering the therapeutic mechanism of the Qi-reinforcing and Yang-warming method. MethodsSD rats were randomly allocated into a control group and a modeling group. Chronic heart failure with heart-Yang deficiency syndrome in rats was modeled by multi-point subcutaneous injection of isoproterenol, and the rats were fed for 14 days after modeling. The successfully modeled rats were randomized into model, Shenfu injection (6.0 mL·kg-1), and trimetazidine (10 mg·kg-1) groups and treated with corresponding agents for 15 days. The control group and the model group were injected with equal doses of normal saline, and the samples were collected after the intervention was completed. Cardiac color ultrasound was performed. Hematoxylin-eosin (HE) staining was used to observe histopathological morphology, and the serum level of N-terminal pro-brain natriuretic peptide (NT-proBNP) was assessed by enzyme-linked immunosorbent assay (ELISA). The mitochondrial morphological and structural changes of cardiomyocytes were observed by transmission electron microscopy, and the metabolic profiling was carried out by ultra high performance liquid chromatography-quantitative exactive-mass spectrometry (UHPLC-QE-MS). Differential metabolites were screened and identified by orthogonal partial least squares-discriminant analysis (OPLS-DA) and other methods, and then the MetaboAnalyst database was used for further screening. The relevant biological pathways were obtained through pathway enrichment analysis. The receiver operating characteristic (ROC) curve was established to evaluate the diagnostic value of each potential biomarker for myocardial injury and the evaluation value for drug efficacy. ResultsThe results of color ultrasound showed that Shenfu Injection improved the cardiac function indexes of model rats (P<0.05). The results of HE staining showed that Shenfu injection effectively alleviated the pathological phenomena such as myocardial tissue structure disorder and inflammatory cell infiltration in model rats. The results of ELISA showed that Shenfu injection effectively regulated the serum NT-proBNP level in the model rats. Transmission electron microscopy (TEM) showed that Shenfu injection effectively restored the mitochondrial morphological structure. The results of metabolomics showed that the metabolic phenotypes of myocardial samples presented markedly differences between groups. Nine differential metabolites could be significantly reversed in the Shenfu injection group, involving three metabolic pathways: pyruvate metabolism, histidine metabolism, and citric acid cycle (TCA cycle). The results of ROC analysis showed that the area under the curve (AUC) values of all metabolites were between 0.75 and 1.0, indicating that the differential metabolites had high diagnostic accuracy for myocardial injury, and the changes in their expression levels could be used as potential markers for efficacy evaluation. ConclusionShenfu injection significantly alleviated the damage of cardiac function, myocardium, and mitochondrial structure in the rat model of chronic heart failure with heart-Yang deficiency syndrome by ameliorating energy metabolism remodeling. Reinforcing Qi and warming Yang is a key method for treating chronic heart failure with heart-Yang deficiency syndrome.
3.Treatment Principles and Paradigm of Diabetic Microvascular Complications Responding Specifically to Traditional Chinese Medicine
Anzhu WANG ; Xing HANG ; Lili ZHANG ; Xiaorong ZHU ; Dantao PENG ; Ying FAN ; Min ZHANG ; Wenliang LYU ; Guoliang ZHANG ; Xiai WU ; Jia MI ; Jiaxing TIAN ; Wei ZHANG ; Han WANG ; Yuan XU ; .LI PINGPING ; Zhenyu WANG ; Ying ZHANG ; Dongmei SUN ; Yi HE ; Mei MO ; Xiaoxiao ZHANG ; Linhua ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):272-279
To explore the advantages of traditional Chinese medicine (TCM) and integrative TCM-Western medicine approaches in the treatment of diabetic microvascular complications (DMC), refine key pathophysiological insights and treatment principles, and promote academic innovation and strategic research planning in the prevention and treatment of DMC. The 38th session of the Expert Salon on Diseases Responding Specifically to Traditional Chinese Medicine, hosted by the China Association of Chinese Medicine, was held in Beijing, 2024. Experts in TCM, Western medicine, and interdisciplinary fields convened to conduct a systematic discussion on the pathogenesis, diagnostic and treatment challenges, and mechanism research related to DMC, ultimately forming a consensus on key directions. Four major research recommendations were proposed. The first is addressing clinical bottlenecks in the prevention and control of DMC by optimizing TCM-based evidence evaluation systems. The second is refining TCM core pathogenesis across DMC stages and establishing corresponding "disease-pattern-time" framework. The third is innovating mechanism research strategies to facilitate a shift from holistic regulation to targeted intervention in TCM. The fourth is advancing interdisciplinary collaboration to enhance the role of TCM in new drug development, research prioritization, and guideline formulation. TCM and integrative approaches offer distinct advantages in managing DMC. With a focus on the diseases responding specifically to TCM, strengthening evidence-based support and mechanism interpretation and promoting the integration of clinical care and research innovation will provide strong momentum for the modernization of TCM and the advancement of national health strategies.
4.Research progress on the mechanism of traditional Chinese medicine regulating metabolic reprogramming to improve breast cancer
Zhenyu ZHANG ; Weixia CHEN ; Bo FENG ; Jilei LI ; Sizhe WANG ; Meng ZHU ; Chunzheng MA
China Pharmacy 2026;37(2):250-256
Metabolic reprogramming, as one of the core hallmarks of malignant tumors, plays a key role in the occurrence, development and treatment of breast cancer (BC). Abnormal changes in glucose metabolism, amino acid metabolism, lipid metabolism, as well as the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) pathways significantly influence the pathogenesis and progression of BC. Studies have shown that various active components of traditional Chinese medicine (TCM) (such as berberine, matrine, quercetin, curcumin, etc.) and their compound formulations (e.g. Xihuang pill, Danzhi xiaoyao powder, Yanghe decoction, etc.) can inhibit the proliferation and migration of BC cells and induce apoptosis by regulating key metabolic pathways such as glycolysis, lipid synthesis, and amino acid metabolism. TCM demonstrates multi-target and holistic regulatory advantages in intervening in BC metabolic reprogramming, showing significant potential in modulating key molecules like hypoxia inducible factor-1α, hexokinase-2, pyruvate kinase M2, lactate dehydrogenase A, glucose transporter-1, fatty acid synthase, and signaling pathways such as AKT/mTOR. However, current researches still focus predominantly on glucose metabolism, with insufficient mechanistic studies on lipid metabolism, amino acid metabolism, the TCA cycle, and OXPHOS. The precise targets, molecular mechanisms, and clinical translation value of these interventions require further validation and clarification through more high-quality experimental studies and clinical trials.
5.Protective effect of asiaticoside on isoproterenol induced myocardial injury in mice
Ziyu Ma ; Xinmeng Zuo ; Zhenyu Wang ; Mingming Wang ; Cui Li
Acta Universitatis Medicinalis Anhui 2025;60(1):59-65
Abstract:
To study the protective effect of asiaticoside(AS) on Isoproterenol Hydrochloride(ISO)-induced myocardial injury in mice.
Methods:
Sixty male C57BL/6 mice were randomly divided into blank control(CON) group, model group [ISO,ISO 10/(kg·d)], Low dose group [ISO+AS-L,ISO 10 mg/(kg·d)+AS 5 mg/(kg·d)], Medium dose group [ISO+AS-M, ISO 10 mg/(kg·d)+AS 10 mg/(kg·d)], High dose group [ISO+AS-H, ISO 10 mg/(kg·d)+AS 20 mg/(kg·d)]. Heart mass ratio was counted; changes were observed in electrocardiogram; Enzyme linked immunosorbent assay(ELISA) was used to detect the levels of interleukin(IL)-1β and cardiac troponin T(cTn-T) in serum; Masson staining was used to observe the fibrosis of mouse myocardial tissue; Western blot was used to detect the ratio of Bax and Bcl-2 protein expression levels(Bax/Bcl-2) and the expression levels of Caspase-3 and NLRP3 proteins in myocardial tissue; real-time quantitative polymerase chain reaction(qPCR) was used to detect the mRNA expression levels ofANP,BNP,β-MHC,TNF-α, IL-6, Type Ⅰ collagen(COLⅠ), and Type Ⅲ collagen(COLⅢ).
Results:
Compared with the CON group, the ISO group had an elevated heart-to-mass ratio(P<0.01), a lower heart rate(P<0.05), a prolonged QT interval(P<0.05), elevated expression of myocardial injury markers cTn-T,ANP,BNP, andβ-MHC(P<0.01); increased expression of IL-1β in the serum(P<0.01), increased expression ofTNF-αin the cardiac tissue and increasedIL-6expression(P<0.001), and NLRP3 protein expression was elevated(P<0.05); myocardium showed a large number of collagen fibers bluish staining(P<0.001),COLⅠ,COLⅢmRNA expression levels increased(P<0.001), and Bax/Bcl-2 ratio(P<0.001) and Caspase-3 expression were significantly elevated(P<0.05). Compared with ISO group, heart-to-mass ratio of mice in ISO+AS-L and ISO+AS-M groups decreased(P<0.05), heart rate increased, QT interval was shortened, cTn-T, ANP, BNP and β-MHC decreased(P<0.001), myocardial collagen fiber blue-staining decreased(P<0.01). The mRNA expression levels ofCOLⅠandCOLⅢdecreased(P<0.05). The expression levels of IL-1β and TNF-α decreased(P<0.01). NLRP3, Caspase-3 protein expression and Bax/Bcl-2 ratio decreased(P<0.05). The expression level ofIL-6in ISO+AS-M group decreased(P<0.01). The expression levels ofANP,BNP, andTNF-αmRNA expression were reduced in the ISO+AS-H group(P<0.001); the degree of myocardial fibrosis was improved(P<0.05), and the expression levels ofCOLⅠandCOLⅢmRNA were reduced(P<0.05).
Conclusion
AS has a protective effect against ISO-induced myocardial injury in mice by ameliorating cardiac fibrosis, inhibiting cardiomyocyte apoptosis and attenuating myocardial tissue inflammatory response.
6.Research Progress on the Mechanism of Lipocalin-2 in Neurological Diseases
Yongtai ZHOU ; Zhenyu YANG ; Yan LI ; Jiajing WU ; Bo ZHAO
Medical Journal of Peking Union Medical College Hospital 2025;16(2):330-337
Lipocalin-2 (LCN2), a member of the human lipocalin family, has been demonstrated to be closely associated with diabetes, cardiovascular diseases, and renal disorders. Recent studies have indicated that LCN2 plays a significant regulatory role in the pathogenesis and progression of various neurological diseases by mediating pathways such as inflammation, oxidative stress, and ferroptosis. This article reviews the research advancements on the mechanism of LCN2 in neurological disorders, including cerebrovascular diseases, cognitive impairment disorders, Parkinson's disease, depression, and anxiety disorders, aiming to enhance clinical understanding.
7.Paclitaxel Oral Preparations: A Review
Jie GAO ; Shiyang LI ; Jing GUO ; Rongsheng LI ; Zhenyu XUAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):322-330
Paclitaxel, a highly effective natural antitumor drug, has been demonstrated to be efficacious in the treatment of a variety of cancers, including breast cancer, ovarian cancer, and lung cancer. The traditional paclitaxel injections have been observed to present certain issues, including overt adverse reactions and a decline in the quality of life of patients following treatment. This ultimately leads to an inability to meet the comprehensive needs of patients, thereby limiting the clinical applications of the drugs. Compared with injectable administration, the oral administration can avoid the risk of infection present in the invasive route, is conducive to improving patient compliance and quality of life, and reduces healthcare costs, and has a good application prospect. However, paclitaxel has low solubility, poor permeability, and is susceptible to the exocytosis of P-glycoprotein, which presents a significant challenge in the development of its oral preparations. Novel drug delivery technologies can enhance the solubility of paclitaxel and facilitate its controlled release, which is beneficial for the oral absorption and efficacy. The paper reviews the development history of oral preparations of paclitaxel, and summarizes the delivery technologies such as polymer micelles, nanoparticles, nanoemulsions and nanocrystals, and discusses the application mechanisms, advantages and limitations of these technologies and their adaptability in different cancer treatments. Finally, the challenges faced in the development of oral preparations of paclitaxel are summarized, and future research directions are proposed in order to provide new ideas for the development of oral delivery of paclitaxel.
8.Paclitaxel Oral Preparations: A Review
Jie GAO ; Shiyang LI ; Jing GUO ; Rongsheng LI ; Zhenyu XUAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):322-330
Paclitaxel, a highly effective natural antitumor drug, has been demonstrated to be efficacious in the treatment of a variety of cancers, including breast cancer, ovarian cancer, and lung cancer. The traditional paclitaxel injections have been observed to present certain issues, including overt adverse reactions and a decline in the quality of life of patients following treatment. This ultimately leads to an inability to meet the comprehensive needs of patients, thereby limiting the clinical applications of the drugs. Compared with injectable administration, the oral administration can avoid the risk of infection present in the invasive route, is conducive to improving patient compliance and quality of life, and reduces healthcare costs, and has a good application prospect. However, paclitaxel has low solubility, poor permeability, and is susceptible to the exocytosis of P-glycoprotein, which presents a significant challenge in the development of its oral preparations. Novel drug delivery technologies can enhance the solubility of paclitaxel and facilitate its controlled release, which is beneficial for the oral absorption and efficacy. The paper reviews the development history of oral preparations of paclitaxel, and summarizes the delivery technologies such as polymer micelles, nanoparticles, nanoemulsions and nanocrystals, and discusses the application mechanisms, advantages and limitations of these technologies and their adaptability in different cancer treatments. Finally, the challenges faced in the development of oral preparations of paclitaxel are summarized, and future research directions are proposed in order to provide new ideas for the development of oral delivery of paclitaxel.
9.Overview of Studies on the Intervention of Chinese Medicinals in Energy Metabolism Reconstruction in Heart Failure
Xinyue NING ; Wenxiao LI ; Zhenyu ZHAO ; Yang GUO ; Panpan ZHOU ; Ludan ZHAO ; Lin LI
Journal of Traditional Chinese Medicine 2025;66(10):1073-1077
Energy metabolism reconstruction is the new target of the treatment of heart failure. By combing the researches of Chinese medicinals for energy metabolism reconstruction of heart failure, it was found that Chinese medicinal compound formula and single Chinese medicinal have a certain role in regulating energy metabolism, mainly through three aspects, including the optimization of substrate utilization, improvement of mitochondrial structure, function, and homeostasis, and improvement of mitochondrial energy transport, so as to make the energy metabolism of the cardiomyocyte adjusted in the direction of beneficial to the organism, increasing the supply of energy, and improving the cardiac function.
10.Shenfu Injection Improve Chronic Heart Failure by Regulates Glycolytic Pathway Mediated by HIF-1α/PFKFB3 Pathway
Ji OUYANG ; Kun LIAN ; Xiaoqian LIAO ; Lichong MENG ; Lin LI ; Zhenyu ZHAO ; Zhixi HU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):136-145
ObjectiveThis study aims to explore the mechanism and targets of Shenfu Injection in regulating glycolysis to intervene in myocardial fibrosis in chronic heart failure based on the hypoxia-inducible factor-1α (HIF-1α)/ 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) signaling pathway. MethodsA rat model of chronic heart failure was established by subcutaneous injection of isoproterenol (ISO). After successful modeling, the rats were randomly divided into the Sham group, Model group, Shenfu injection (SFI, 6 mL·kg-1) group, and inhibitor (3PO, 35 mg·kg-1) group, according to a random number table, and they were treated for 15 days. Cardiac function was evaluated by echocardiography, and serum N-terminal pro-brain natriuretic peptide (NT-proBNP) levels were detected by enzyme-linked immunosorbent assay (ELISA). Fasting body weight and heart weight were measured, and the heart index (HI) was calculated. Pathological changes in myocardial tissue were observed by hematoxylin-eosin (HE) and Masson staining, and the fibrosis rate was calculated. Biochemical assays were used to determine serum levels of glucose (GLU), lactic acid (LA), and pyruvic acid (PA). Western blot was used to analyze the expression of proteins related to the HIF-1α/PFKFB3 signaling pathway (HIF-1α and PFKFB3), glycolysis-related proteins (HK1, HK2, PKM2, and LDHA), and fibrosis-related proteins [transforming growth factor (TGF)-β1, α-smooth muscle actin (α-SMA), and Collagen type Ⅰ α1 (ColⅠA1)]. Real-time PCR was used to detect the mRNA expression of HIF-1α and PFKFB3 in myocardial tissue. ResultsCompared with the Sham group, the Model group showed significantly decreased left ventricular ejection fraction (LVEF), left ventricular shortening fraction (LVFS), interventricular septal thickness (IVSd), and interventricular septal strain (IVSs) (P<0.05), while left ventricular internal dimension at end-diastole (LVDd) and end-systole (LVIDs) were increased (P<0.05). Serum NT-proBNP levels were significantly increased (P<0.01), and body weight was decreased. Heart weight was increased, and the HIT index was increased (P<0.05). Myocardial tissue exhibited inflammatory cell infiltration and collagen fiber deposition, and the fibrosis rate was significantly increased (P<0.05). Serum GLU was decreased (P<0.05), while LA and PA levels were increased (P<0.05). Protein expressions of HIF-1α, PFKFB3, HK1, HK2, PKM2, LDHA, TGF-β1, α-SMA, and ColⅠA1, as well as the mRNA expression of HIF-1α and PFKFB3 were increased (P<0.05). Compared with the Model group, both the SFI group and 3PO groups showed significant improvements in LVEF, LVFS, IVSd, and IVSs (P<0.05) and decreases in LVDd, LVIDs, and NT-proBNP levels (P<0.05). Body weight was significantly increased. Heart weight was significantly decreased, and the HIT index was significantly decreased (P<0.05). Inflammatory cell infiltration, collagen fiber deposition, and the fibrosis rate were significantly decreased (P<0.05). Serum GLU levels were significantly increased (P<0.05), while LA and PA levels were decreased (P<0.05). Expressions of glycolysis-related proteins, fibrosis-related proteins, and HIF-1α/PFKFB3 pathway-related proteins and mRNAs were significantly suppressed (P<0.05). ConclusionSFI improves cardiac function in chronic heart failure by downregulating the expression of HIF-1α/PFKFB3 signaling pathway-related proteins, regulating glycolysis, and inhibiting myocardial fibrosis.


Result Analysis
Print
Save
E-mail