1.Mechanism of Traditional Chinese Medicine Regulating JAK/STAT Signaling Pathway to Intervene in Lung Cancer: A Review
Jiarui CAO ; Bo FENG ; Chunzheng MA ; Weixia CHEN ; Jiangfan YU ; Shasha CAO ; Zhenyu ZHANG ; Wenhui OUYANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):265-276
Lung cancer is the malignant tumor with the highest incidence and mortality rates globally. Current treatment methods for lung cancer primarily include surgery, chemotherapy, targeted therapy, and immunotherapy. However, the main limitations of these treatments are their side effects, the drug resistance, and the economic burden they impose. As a critical cancer pathway, the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway regulates tumor occurrence and development through multiple mechanisms by influencing various downstream targets. Consequently, the JAK/STAT signaling pathway offers a promising avenue for lung cancer treatment research. Numerous studies have demonstrated that the JAK/STAT signaling pathway plays a key role in the proliferation and growth of lung cancer cells, angiogenesis, epithelial-mesenchymal transition (EMT), metabolic alterations, remodeling of the immune microenvironment, and the development of treatment resistance. Traditional Chinese medicine (TCM) has garnered increasing attention due to its minimal side effects, low economic burden, and its potential to enhance efficacy and reduce toxicity when used in conjunction with Western medicine. In addition to traditional Chinese medicine compounds, a growing number of Chinese medicine monomers have come into the spotlight because of their more targeted effects. Numerous studies investigating the regulation of the JAK/STAT signaling pathway by TCM in the treatment of lung cancer have demonstrated that TCM can inhibit the proliferation and invasion of lung cancer cells, tumor angiogenesis, and EMT, improve the inflammatory and immunosuppressive microenvironments, and enhance treatment sensitivity by intervening in the JAK/STAT signaling pathway, thereby impeding the progression of lung cancer. In recent years, the research on the regulation of this pathway by TCM in the treatment of lung cancer has been updated rapidly. However, the summary of these studies has not been updated in time. This review summarizes and reflects on the recent research findings regarding the regulation of the JAK/STAT signaling pathway by TCM to intervene in lung cancer from three aspects, introducing the JAK/STAT pathway, elaborating the mechanism of this pathway in lung cancer, and exploring the intervention of TCM in the treatment of lung cancer through this pathway, to provide more reference for the treatment of lung cancer in the future.
2.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
3.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
4.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
5.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
6.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
7.Quality evaluation of Xintong granules based on HPLC fingerprint and quantitative analysis of multi-components by single-marker method
Xide YE ; Xiaolong FENG ; Mingguo SHAO ; Linchun WAN ; Zhenyu HU ; Chunyu CHEN ; Yu WU ; Junwen BU ; Yuhang QIAN ; Fanqiang MENG
China Pharmacy 2025;36(15):1866-1870
OBJECTIVE To establish the HPLC fingerprint of Xintong granules and the quantitative analysis of multi- components by single-marker method (QAMS) to determine the contents of 7 components, so as to provide a scientific basis for their quality control. METHODS HPLC method was used to establish the fingerprints for 10 batches of Xintong granules (No. S1- S10), and similarity evaluation, cluster analysis (CA) and partial least squares-discriminant analysis (PLS-DA) were performed. At the same time, the contents of seven components, including puerarin, daidzin, calycosin-7-O- β -D-glucoside, stilbene glycoside, naringin, icariin and tanshinone ⅡA, were determined by QAMS method, and were compared with the results of external standard method. RESULTS A total of 18 common peaks were marked and 7 peaks were identified in the HPLC fingerprints for 10 batches of Xintong granules, namely puerarin (peak 4), daidzin (peak 7), calycosin-7-O-β-D-glucoside (peak 9), stilbene glycoside (peak 10), naringin (peak 12), icariin (peak 17), and tanshinone ⅡA (peak 18); the similarities among them were more than 0.990, and CA and PLS-DA results showed that S4-S5,S8-S10,S1-S3 and S6-S7 were clustered into three categories, respectively. Using naringin as the internal standard, the contents of puerarin, daidzin, calycosin-7-O-β-D-glucoside, stilbene glycoside, icariin and tanshinone ⅡA were determined to be 7.868 1-10.181 2, 1.709 2-2.374 1, 0.285 2-0.326 3, 1.024 1- 1.523 9, 0.140 2-0.290 4, and 0.077 1-0.219 4 mg/g, respectively, by the QAMS. These results showed no significant differences compared to those obtained by the external standard method. CONCLUSIONS Established HPLC fingerprint and QAMS method are convenient, stable and accurate, which can provide a basis for the quality evaluation of Xintong granules.
8.Study on quality evaluation of Buddleja officinalis from different habitats based on HPLC fingerprint and content determination
Cuijie WEI ; Xiaoxia LIU ; Zhiwen DUAN ; Yongwei FENG ; Xiaozhou JIA ; Yueyi LIANG ; Xiangdong CHEN ; Dongmei SUN ; Zhenyu LI
International Journal of Traditional Chinese Medicine 2024;46(2):215-221
Objective:To establish UPLC fingerprint method and 2 contents determination methods of Buddleja officinalis; To provide a reference for improving the quality control standard and evaluation of Buddleja officinalis from different habitats.Methods:UPLC method was used to establish the fingerprints of 17 batches of Buddleja officinalis. The similarity evaluation, clustering analysis, principal component analysis and orthogonal partial least squares discriminant analysis were used to compare the quality differences of Buddleja officinalis from different habitats. The contents of acteoside and linarin in Buddleja officinalis were determined.Results:There were 12 common peaks in UPLC fingerprints of Buddleja officinalis, six of which were identified as echinacoside, acteoside, cynaroside, isoacteoside, linarin, and apigenin. The fingerprint similarity of 17 batches of Buddleja officinalis was more than 0.9; Buddleja officinalis from different habitats were classified into 2 groups. Five differential markers were determined by OPLS-DA analysis. The order of significance was acteoside > peak 3 > echinacoside > isoacteoside > linarin. Edgeworthia chrysantha was identified by the method of fingerprint as counterfeit. The results of content determination showed that the content of Buddleja officinalis in Hubei and Sichuan was the high and stable.Conclusion:The method can effectively analyze the differences of Buddleja officinalis from different habitats, and provide reference for the quality control of Buddleja officinalis.
9.Study on the changes of chemical components of Aristolochia contorta before and after honey processing based on HPLC fingerprint and multivariate statistical analysis
Xiaoxia LIU ; Yongwei FENG ; Cuijie WEI ; Chunxiu WU ; Minyou HE ; Liye PAN ; Dongmei SUN ; Zhenyu LI
International Journal of Traditional Chinese Medicine 2024;46(11):1485-1492
Objective:To establish HPLC fingerprints of Aristolochia contorta and honey-processed Aristolochia contorta; To analyze the changes of chemical components before and after honey processing with multivariate statistics; To provide a reference for the study on the toxicity reduction of Aristolochia contorta.Methods:The fingerprints of 11 batches of Aristolochia contorta and honey-processed Aristolochia contorta were established through HPLC. Clustering analysis (HCA), principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA) and independent sample t-test were used to compare the changes of chemical components of Aristolochia contorta before and after honey processing.Results:The results showed that there were 14 common peaks in the fingerprints of Aristolochia contorta and Aristolochia contorta. 7 common peaks were identified. Both HCA and PCA could clearly distinguish the samples of Aristolochia contorta before and after honey processing. OPLS-DA found and screened 7 differential markers, and the order of difference significance was peak 3 > peak 7 (7-hydroxy aristolochic acid A) > peak 5 (aristolochic acid C)> peak 8 (aristolochic acid D) > peak 6 > peak 2 (Magnolia alkaloid) > peak 14 (aristolochic acid Ⅰ). After honey processing, the content of chemical components represented by peaks 2, 3, 5, 6, 7, 8 and 14 decreased ( P<0.05). Conclusion:This method is simple and specific, which can be used for the fingerprint analysis of Aristolochia contorta and honey-processed Aristolochia contorta, and can effectively distinguish Aristolochia contorta and honey-processed Aristolochia contorta, and provide a reference for the processing research of toxicity reduction of Aristolochia contorta honey processing.
10.Study on the quality markers of Curcumae Radix standard decoction based on fingerprint and network pharmacology
Zhiwen DUAN ; Xiaoxia LIU ; Minyou HE ; Cuijie WEI ; Yongwei FENG ; Haibao QIU ; Ronghui ZHENG ; Dongmei SUN ; Xiangdong CHEN ; Zhenyu LI
International Journal of Traditional Chinese Medicine 2024;46(12):1622-1628
Objective:To establish the ultra-high performance liquid chromatography (UPLC) fingerprint and high performance liquid chromatography (HPLC) content determination method of Curcumae Radix standard decoction; To predict the quality markers of Curcumae Radix standard decoction combined with network pharmacology.Methods:UPLC method was used to establish the fingerprint of Curcumae Radix standard decoction, and the common peaks were determined. Combined with chemical pattern recognition techniques such as similarity analysis and clustering analysis, Curcumae Radix standard decoction from different producing areas was studied, and curcumol was used as an index to determine the content of 24 batches of Curcumae Radix standard decoction. At the same time, network pharmacology was used to predict potential of curcumol and (1S, 6β)-1β-Methyl-4-(1-methylethylidene)-7β-(3-oxobutyl) bicyclo [4.1.0] heptan-3-one.Results:A total of 24 batches of Curcumae Radix standard decoction from different habitats were compared and analyzed, and 10 common peaks were calibrated. The similarity of 24 batches of samples ranged from 0.982 to 0.999. Clustering analysis and principal component analysis divided them into three categories. Heat map analysis showed that peak 8 (curcumol) and peak 9 ((1S, 6β)-1β-Methyl-4-(1-methylethylidene)-7β-(3-oxobutyl) bicyclo [4.1.0] heptan-3-one) were the main components. The content of curcumol in 24 batches of Curcumae Radix standard decoction was 0.69-1.87 mg/g; curcumol and (1S, 6β)-1β-Methyl-4-(1-methylethylidene)-7β- (3-oxobutyl) bicyclo [4.1.0] heptan-3-one may regulate the neuroactive ligand-receptor interaction signaling pathway, calcium signaling, and excitation by regulating neuroactive ligand-receptor interaction signaling pathway, calcium signaling, and excitation. It was preliminarily predicted that curcumol and (1S, 6β)-1β-Methyl-4-(1-methylethylidene)-7β-(3-oxobutyl) bicyclo [4.1.0] heptan-3-one were potential quality markers of Curcumae Radix.Conclusion:Curcumol and (1S, 6β)-1β-Methyl-4-(1-methylethylidene)-7β-(3-oxobutyl) bicyclo [4.1.0] heptan-3-one are potential quality markers of Curcumae Radix standard decoction, and the established fingerprint can be used for the quality control of Curcumae Radix standard decoction.

Result Analysis
Print
Save
E-mail