1.Finite element analysis of anterior maxillary segmental distraction osteogenesis using asymmetric distractors in patients with unilateral cleft lip and palate
Zehua JIN ; Ruomei LI ; Jiajun SHI ; Yuehua ZHANG ; Zhenqi CHEN
The Korean Journal of Orthodontics 2025;55(2):142-153
Objective:
The treatment of asymmetric maxillary hypoplasia and dental crowding secondary to unilateral cleft lip and palate (UCLP) is often challenging.This study introduced an asymmetric tooth-borne distractor in anterior maxillary segmental distraction osteogenesis and used three-dimensional finite element analysis to evaluate its potential for clinical application in cases of asymmetrical maxillary hypoplasia.
Methods:
A cone-beam computed tomography scan of a late adolescent with UCLP was used to construct a three-dimensional finite element model of the teeth and maxillary structures. An asymmetric distractor model was used to simulate conventional distraction osteogenesis and asymmetric distraction osteogenesis (ADO) to evaluate the resultant stress distribution and displacement.
Results:
Postoperatively, both distraction methods resulted in anterior maxillary segment advancement with a slight upward movement. ADO yielded a greater increase in the dental arch length on the cleft side and induced rotation of the anterior maxillary segment, potentially improving midline deviation. Both methods showed similar stress distributions, with higher stress concentrations on the cleft side.
Conclusions
ADO may offer clinical advantages in correcting asymmetrical maxillary hypoplasia in patients with UCLP by facilitating asymmetrical expansion and rotation of the maxilla. Further research is needed to generalize these findings to other clinical presentations.
2.Finite element analysis of anterior maxillary segmental distraction osteogenesis using asymmetric distractors in patients with unilateral cleft lip and palate
Zehua JIN ; Ruomei LI ; Jiajun SHI ; Yuehua ZHANG ; Zhenqi CHEN
The Korean Journal of Orthodontics 2025;55(2):142-153
Objective:
The treatment of asymmetric maxillary hypoplasia and dental crowding secondary to unilateral cleft lip and palate (UCLP) is often challenging.This study introduced an asymmetric tooth-borne distractor in anterior maxillary segmental distraction osteogenesis and used three-dimensional finite element analysis to evaluate its potential for clinical application in cases of asymmetrical maxillary hypoplasia.
Methods:
A cone-beam computed tomography scan of a late adolescent with UCLP was used to construct a three-dimensional finite element model of the teeth and maxillary structures. An asymmetric distractor model was used to simulate conventional distraction osteogenesis and asymmetric distraction osteogenesis (ADO) to evaluate the resultant stress distribution and displacement.
Results:
Postoperatively, both distraction methods resulted in anterior maxillary segment advancement with a slight upward movement. ADO yielded a greater increase in the dental arch length on the cleft side and induced rotation of the anterior maxillary segment, potentially improving midline deviation. Both methods showed similar stress distributions, with higher stress concentrations on the cleft side.
Conclusions
ADO may offer clinical advantages in correcting asymmetrical maxillary hypoplasia in patients with UCLP by facilitating asymmetrical expansion and rotation of the maxilla. Further research is needed to generalize these findings to other clinical presentations.
3.Finite element analysis of anterior maxillary segmental distraction osteogenesis using asymmetric distractors in patients with unilateral cleft lip and palate
Zehua JIN ; Ruomei LI ; Jiajun SHI ; Yuehua ZHANG ; Zhenqi CHEN
The Korean Journal of Orthodontics 2025;55(2):142-153
Objective:
The treatment of asymmetric maxillary hypoplasia and dental crowding secondary to unilateral cleft lip and palate (UCLP) is often challenging.This study introduced an asymmetric tooth-borne distractor in anterior maxillary segmental distraction osteogenesis and used three-dimensional finite element analysis to evaluate its potential for clinical application in cases of asymmetrical maxillary hypoplasia.
Methods:
A cone-beam computed tomography scan of a late adolescent with UCLP was used to construct a three-dimensional finite element model of the teeth and maxillary structures. An asymmetric distractor model was used to simulate conventional distraction osteogenesis and asymmetric distraction osteogenesis (ADO) to evaluate the resultant stress distribution and displacement.
Results:
Postoperatively, both distraction methods resulted in anterior maxillary segment advancement with a slight upward movement. ADO yielded a greater increase in the dental arch length on the cleft side and induced rotation of the anterior maxillary segment, potentially improving midline deviation. Both methods showed similar stress distributions, with higher stress concentrations on the cleft side.
Conclusions
ADO may offer clinical advantages in correcting asymmetrical maxillary hypoplasia in patients with UCLP by facilitating asymmetrical expansion and rotation of the maxilla. Further research is needed to generalize these findings to other clinical presentations.
4.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
Purpose:
The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs).
Materials and Methods:
Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients.
Results:
A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804.
Conclusion
USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients.
5.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
Purpose:
The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs).
Materials and Methods:
Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients.
Results:
A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804.
Conclusion
USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients.
6.Finite element analysis of anterior maxillary segmental distraction osteogenesis using asymmetric distractors in patients with unilateral cleft lip and palate
Zehua JIN ; Ruomei LI ; Jiajun SHI ; Yuehua ZHANG ; Zhenqi CHEN
The Korean Journal of Orthodontics 2025;55(2):142-153
Objective:
The treatment of asymmetric maxillary hypoplasia and dental crowding secondary to unilateral cleft lip and palate (UCLP) is often challenging.This study introduced an asymmetric tooth-borne distractor in anterior maxillary segmental distraction osteogenesis and used three-dimensional finite element analysis to evaluate its potential for clinical application in cases of asymmetrical maxillary hypoplasia.
Methods:
A cone-beam computed tomography scan of a late adolescent with UCLP was used to construct a three-dimensional finite element model of the teeth and maxillary structures. An asymmetric distractor model was used to simulate conventional distraction osteogenesis and asymmetric distraction osteogenesis (ADO) to evaluate the resultant stress distribution and displacement.
Results:
Postoperatively, both distraction methods resulted in anterior maxillary segment advancement with a slight upward movement. ADO yielded a greater increase in the dental arch length on the cleft side and induced rotation of the anterior maxillary segment, potentially improving midline deviation. Both methods showed similar stress distributions, with higher stress concentrations on the cleft side.
Conclusions
ADO may offer clinical advantages in correcting asymmetrical maxillary hypoplasia in patients with UCLP by facilitating asymmetrical expansion and rotation of the maxilla. Further research is needed to generalize these findings to other clinical presentations.
7.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
Purpose:
The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs).
Materials and Methods:
Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients.
Results:
A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804.
Conclusion
USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients.
8.Finite element analysis of anterior maxillary segmental distraction osteogenesis using asymmetric distractors in patients with unilateral cleft lip and palate
Zehua JIN ; Ruomei LI ; Jiajun SHI ; Yuehua ZHANG ; Zhenqi CHEN
The Korean Journal of Orthodontics 2025;55(2):142-153
Objective:
The treatment of asymmetric maxillary hypoplasia and dental crowding secondary to unilateral cleft lip and palate (UCLP) is often challenging.This study introduced an asymmetric tooth-borne distractor in anterior maxillary segmental distraction osteogenesis and used three-dimensional finite element analysis to evaluate its potential for clinical application in cases of asymmetrical maxillary hypoplasia.
Methods:
A cone-beam computed tomography scan of a late adolescent with UCLP was used to construct a three-dimensional finite element model of the teeth and maxillary structures. An asymmetric distractor model was used to simulate conventional distraction osteogenesis and asymmetric distraction osteogenesis (ADO) to evaluate the resultant stress distribution and displacement.
Results:
Postoperatively, both distraction methods resulted in anterior maxillary segment advancement with a slight upward movement. ADO yielded a greater increase in the dental arch length on the cleft side and induced rotation of the anterior maxillary segment, potentially improving midline deviation. Both methods showed similar stress distributions, with higher stress concentrations on the cleft side.
Conclusions
ADO may offer clinical advantages in correcting asymmetrical maxillary hypoplasia in patients with UCLP by facilitating asymmetrical expansion and rotation of the maxilla. Further research is needed to generalize these findings to other clinical presentations.
9.Analysis of effectiveness of Holosight robot navigation-assisted percutaneous cannulated screw fixation in treatment of femoral neck fractures.
Weizhen XU ; Zhenqi DING ; Hui LIU ; Jinhui ZHANG ; Yuanfei XIONG ; Jin WU
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(6):673-679
OBJECTIVE:
To investigate the effectiveness of Holosight robotic navigation-assisted percutaneous cannulated screw fixation for femoral neck fractures.
METHODS:
A retrospective analysis was conducted on 65 patients with femoral neck fractures treated with cannulated screw fixation between January 2022 and February 2024. Among them, 31 patients underwent robotic navigation-assisted screw placement (navigation group), while 34 underwent conventional freehand percutaneous screw fixation (freehand group). Baseline characteristics, including age, gender, fracture side, injury mechanism, Garden classification, Pauwels classification, and time from injury to operation, showed no significant differences between the two groups ( P>0.05). The operation time, intraoperative blood loss, fluoroscopy frequency, fracture healing time, and complications were recorded and compared, and hip function was evaluated by Harris score at last follow-up. Postoperative anteroposterior and lateral hip X-ray films were taken to assess screw distribution accuracy, including deviation from the femoral neck axis, inter-screw parallelism, and distance from screws to the femoral neck cortex.
RESULTS:
No significant difference was observed in operation time between the two groups ( P>0.05). However, the navigation group demonstrated superior outcomes in intraoperative blood loss, fluoroscopy frequency, deviation from the femoral neck axis, inter-screw parallelism, and distance from screws to the femoral neck cortex ( P<0.05). No incision infections or deep vein thrombosis occurred. All patients were followed up 12-18 months (mean, 16 months). In the freehand group, 1 case suffered from cannulated screw dislodgement and nonunion secondary to osteonecrosis of femoral head at 1 year after operation, 1 case suffered from screw penetration secondary to osteonecrosis of femoral head at 5 months after operation; and 1 case suffered from nonunion secondary to osteonecrosis of femoral head at 6 months after operation in the navigation group. All the 3 patients underwent internal fixators removal and total hip arthroplasty. There was no significant difference in the incidence of complications between the two groups ( P>0.05). The fracture healing time and hip Harris score at last follow-up in the navigation group were significantly better than those in the freehand group ( P<0.05).
CONCLUSION
Compared to freehand percutaneous screw fixation, Holosight robotic navigation-assisted cannulated screw fixation for femoral neck fractures achieves higher precision, reduced intraoperative radiation exposure, smaller incisions, and superior postoperative hip function recovery.
Humans
;
Femoral Neck Fractures/diagnostic imaging*
;
Bone Screws
;
Fracture Fixation, Internal/instrumentation*
;
Male
;
Female
;
Retrospective Studies
;
Robotic Surgical Procedures/methods*
;
Middle Aged
;
Aged
;
Adult
;
Treatment Outcome
;
Operative Time
;
Fracture Healing
;
Surgery, Computer-Assisted/methods*
;
Fluoroscopy
10.TCM Guidelines for Diagnosis and Treatment of Chronic Cough in Children
Xi MING ; Liqun WU ; Ziwei WANG ; Bo WANG ; Jialin ZHENG ; Jingwei HUO ; Mei HAN ; Xiaochun FENG ; Baoqing ZHANG ; Xia ZHAO ; Mengqing WANG ; Zheng XUE ; Ke CHANG ; Youpeng WANG ; Yanhong QIN ; Bin YUAN ; Hua CHEN ; Lining WANG ; Xianqing REN ; Hua XU ; Liping SUN ; Zhenqi WU ; Yun ZHAO ; Xinmin LI ; Min LI ; Jian CHEN ; Junhong WANG ; Yonghong JIANG ; Yongbin YAN ; Hengmiao GAO ; Hongmin FU ; Yongkun HUANG ; Jinghui YANG ; Zhu CHEN ; Lei XIONG
Journal of Nanjing University of Traditional Chinese Medicine 2024;40(7):722-732
Following the principles of evidence-based medicine,in accordance with the structure and drafting rules of standardized documents,based on literature research,according to the characteristics of chronic cough in children and issues that need to form a consensus,the TCM Guidelines for Diagnosis and Treatment of Chronic Cough in Children was formulated based on the Delphi method,expert discussion meetings,and public solicitation of opinions.The guideline includes scope of application,terms and definitions,eti-ology and diagnosis,auxiliary examination,treatment,prevention and care.The aim is to clarify the optimal treatment plan of Chinese medicine in the diagnosis and treatment of this disease,and to provide guidance for improving the clinical diagnosis and treatment of chronic cough in children with Chinese medicine.

Result Analysis
Print
Save
E-mail